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SUMMARY

The research summarized by this report was undertaken as a first step
in the development of a system of automated decision aids designed to
facilitate the application of decision analysis to major decisions within ke

the Department of Defense., ''‘NDecision analysis', as used here, refers to

a practical science of decision making that combines the fieilds of opera-
tions rescarch and statistical decision theory. Applications of decision
analysis to military problems have demonstrated its potential for assisting
military decision makers. However future application will he limited un- .
less automated aids are developed to speed up the decision analysis pro=-

cess and alleow non-specialists access to the powerful problem solving

tools that are currently available only to a few highly=-trained and exper-

ienced decision analysts,

B R e Sl

To advance the development of such a system of computerized decision

alds, rescarch was undertaken to develop a decision morphology: a pre-

35T 2

cise characterization of the logical and analyti: steps required to analyze 4

l
a wide variety of decisiona. Thiy research has produced: (1) a charac- | /

terization of the different kinds of decision situations that arise in

g practice and an explorati{on of the implications of these characteristics

RRCEN- IS,

for automated decision aids; (2) a description of the types of decision

§ models availahle for analyzing a variety of decision situations; (3) a ﬁ
deseription of the process of constructing decision models, and (4) an

fdentification of several eas{ly undicrstood modelivy concepts that provide i

Sha

a nasis for designing and constructing a rilot-level system of automated

: ' decision aids, The paragraphs below provide hrief summaries of the re-

] _ sults in each of these four areas.
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A Characterization of Decision Situations

Decision situations differ in three hasic respects, each of which
affects the nature of appropriate modeling procedures and associated
computerized decision aids. Decision problems can be characterized by
(1) the nature of the decision environm nt, (2) the preferences ani
resources of decision mukers, and (3) the process by which various in-

dividuals interact to reach a decision.

The applicabhility of various decision analytic pirocedures depends
on the characteristics of the specific decision being analyzed. For in-
stance, one important characteristic is the role time plays in the deci-
sion. If the basic elements of the decision environment or the relation-
ships among these elements change significantly with tfme, an analyst must
decide whether or not to use decision models with time-varying pu.ameters.
Since these models are much more difficult to construct and more expron-
sive to analyze, dynamic models should be used only if the explicit rep-
resentation of the time~varying aspects of the situations is critical
to determining an optimal decisinn. Other relevant characteristics of
a decision situation include: the depree of uncertainty present, which
may dictate the use of probabiiistic rather than determiniatic models;
the complexity and continuity of the environment, which influences the
appropriate size of the model; whether the situation is unique or recur-
ring; the rescurces affected; and the scope and urgency of the decision,
which determine the appropriate level of resources that should be de-

voted to the development of a decision model.

The characteristics of decision makers define a second respect in
which decision situations differ. For instance, decision makers can dif-
fer according to the complexity of their preferences. One commander might
use a simple measure to guide his decision, such as whether or not his
forces control a strategic location by nightfall, Another commander might
base his decision on a variety of objectives, including not only whether

his forces have gained control, but also the time required to do so, the

casualties suffered, the psychological effect on the enemy, the morale of his

troops, and so forth. Decision makers can also differ in thei{r training

E:
X
3
!
E
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and experierce with quantitative analysis. As a result, decision models

must he adapted to produce results that can bhe easily uiderstood and ac-
cepted by a particular decision maker, Similarly, the nature of decision
models are poverned by differences in the level of resources that decision

makers can allncate to problem analysis,

The third major respect in which decision situations differ is the
organizational structure within which decisicn makers must operate. Organ-
izational structure can be characterized by the number of people involved

1ia the decision and the nature of the interactions among them. When there

is oaly one decision maker, a decision model will he concerned primarily
with his alternatives, preferences, and information. However, when there

are two or more decision makers, each must take {nto account the possihle

actions of the others. The manner in which interactions among decision

makers are modeled strongly influences bhoth the applicability and complex-

ity of a decision model.

Types of Decision Models

For the purposes of this resecarch, a decision model is any quantita-
tive or logical abstraction of reality that is constructed and analyzed
to help somebody reach a decision. The usual methed of characterizing
decision models is by the nature of their components. Virtually all de=-
cision models contain one or more of the following components: system
variahles, which represent elemenis of the decision environment; assump=-
tinns concerning the sequence or timing of new information about the deci-
sion environment; assumptions concerning the structural linkages or inter-
dependences among system variables; and a specification of the decision
maker’s preferences among possible states of the world as reprrsented by
the system variables. The relative emphasis placed on these components
decermines the form of a particular model and the types of insights it

can provice {nto a decision situation,

In addition, there are several global characteristics that distinguish 4
decision models. One of these is the relative emphasis in the model on ;

derivattion rather than direct assessment of factors related to the decision. f
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In some situations it may be difficult to assess d’rectly the implications of
complex interactions among elements of the decision environment. However,
doing so may significantly simplify an analysis. The size and complexity
of a decision model are also important global chara:terigtics that deter-

mine the model’s applicability. Another common way of characterizirg a
decision model is in terms of its mathematical properties, such as whether
the system variables are deterministic or probabilistic, continuous or
discrete, static or time~dependent, and constrained or unconstrained.
Although these characteristics need not be of great concern to the dec!szion
maker, they can be crucial in determining the feasibiiity of analyzing

a model and its usefulness in describing the decision environment.

The Process of Modeling and Analyzing Decisions

To construct and analyze a decision model, it is necessary to carry
out a number of logical procedures. They can be broken into two broad
categoriest: modeling and analysis. The modeling process 18 primarily
concerned with defining the various components of the decision model. The
analysis process involves solving the model to determine its implications

for decision making, and computing the effects of changing assumptions
inherent in the model.

The modeling process is composed of two components: structuring and
assessment. In structuring, the decision maker’s alternatives, the pos-
sible outcomes that could result from his actions, the external factors
affecting the outcome, and the linkages among the model variables are
identified. During the assessment process the existing stave of infor-
mation about components of the decision model is quantified and the deci-
sion maker’s preferences among possible outcomes, the time at which they

might occur, and the risks associated with each alternative are specified.

The process of model analysis consists of model solutfion, sensitivity

analysis, and determining the value of gathering additional information.
The solution of the model consists of finding the optimal decision alter-
native and the corresponding probability distribution of possible outcomes.
Sensitivity analysis i3 used to determine the relative importance of model
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components and thus guides efforts to revise and improve the modzl. Deter~
mining the value of information provides the basis for decisions to gather

new information, which can be used to update or restructure the model.

The various modeling and analysis procedures are used iteratively to
develop a decision model: Thus at each stage in the development of a de-
cision model, the model itself is used to determine which of its compo-
nents should be modified and whether new information about the decision

environment should be gathered.

Concepts and Tools for Decision Mod+ling

The model building process often benefits from the use of granhical &
atds such as decision trees, flow charts, and hlock diagrams, and alge- i
braic representations such as mathematical equations and computer programs, é
Thercfore, an efficient decision aiding system should provide user commu=~
nication in a language that facilitates the use of both graphical and alge-~

braic aids. As a first step towards identifying such a language, research

TR T

was conducted to determine the underlying concepts common to all decision ;

! model representations.

An important conclusion is that all models, regardless of whether
they are represented in graphical or algebraic terms, are composed of two
types of fundamental building blocks: "entit.es" and "operators"., Enti- £
E ties are varifables that deacribe the state of the decision environment or
‘ the decision maker’s perception of the environment, Operators are direc-

tional functions that take entifties as inputs and produce other entities

as outputs. The purpose of operators {s to describe the way in which en-
tities are modified by the environment and the manner in which they are
related. As an cxample, radar coverage and weather conditions might be
entities in a dectsion model of an air strike. A functional relationship

that relates weather conditions to radar coverage could be regarded as a

model operator.

Decision models are produced by connecting appropriately defined en-
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tities and operators. In small models it is typical for specification of
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the links between operators and entities to be included in the definition
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of the operators, However, the deiinitions of entities and operators,

and the manner in which they are connected can bhe specified separately.
Topological connections among operators and entities are specifed by "con-

nection rules". These rules determine exactly which entities are the in-

puts and outputs of each operator

When operators and entities are linked together, either individ-
ually or through the use of connecticn rules, the result is a computa~
tional praph, Computational graphs can be classified according to the
degree to which they are interconnected, For example, the connections
in some praphs contain loops. A computational gruph contains a loop if
two entities are connected by two or more paths with oprositely directed
operators, If a computational graph contains no loops it is called a tree.
An example is a decision tree. 1In a decision tree the entities are the
nodes of the trem, the linkages are the branches, and the operators are

the rules for evaluating the tree.

Specific types of graphs arc useful as applied modelinp tools. One
such tool is a function graph=--a graph composed of entities that are alge=-
brale or logi.al variables, and operators expressed in the form of equa-
tions. Working with a decision maker, an analyst can construct a deter-
ministic decision model in the form of a function graph. The advantape
of working with a fuction graph {s that the rules for its construction
may be generated in an orderly way from answers the decision maker supplies
to a set of specific and well=-defined questions. A similar sort of graph,
called an influence diagram, can be used to construct a model of the probabi-
list.c relationships among elements of a decision problem. This modeling
tool can be used to greatly reduce the number of probability assessments and
amount of probabilistic processing required to analyze a decision model.
Althouph further research is needed to gain a complete understanding of the
properties of these applied modeling concepts, they have already proven

useful in the analysis of several complex decision problems.

It appears that function graphs and influence diagrams may repre-
sent a significaant advancement in the area of computer-aided decision
modeling. These tools allow an individual to represent his or her know=-
ledge regarding model structure in a way that is intuitive, and, at the
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same time sufficiently precise to serve as a communication medium for a

computer. Thus there is hope that computerized decision aiding systems
can be developed that provide the military executive with powerful tools
for improving his decision making ability without requiring him to learn

specialized computer languages that are foreign to his present way of

thinking.
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A. The Purpose and Context of this Research

The rescarch described in this report was conducted in response tu
a desire on the part of the Defense Advanced Research Projects Agency and
the Deciston Analysis Group of SRI to develop automated decision aids that
would factlitate the application of decision analysis to major manapement
decistons within the Department of NDefense. When this research began,
several computer programs had been written at SRI and elsewhere to deal
with various asgpects of analyzing decision problems, such as elfciting
probahility distributions or carrying out decision tree calculations,
However, these computer programs dealt only with certaln limited aspects
of the decisfon analyslis process and, for the most part, they requiroed
the user to he familiar with computer programminp. The computer progprams
were not well suited to the needs of decision makers who lacked trafining
in decision analysis and computer programming. In fact, computer programs
develaped by one group of decislon analysts were scldom used by other an-
alysts because the programs often contained proredures and limitations

specific to the needs of the analysts who wrote them.

Since the SRI Decision Analysis Group had alrecadv written several
peneral purpose computer proprams for generating and analyzinpg deciafon
trees (and other tree structures), it was necessary to decide whether the
rescarch would be devoted to expanding and generalizing the ex{sting aids,
or to investipating more generally the procedures used to describe and
analyze decision problems and the wavs in which automated decision atds
could help analysts and decision makers carry out these procedures, It
was decided that incremental {mprovements (n the eoxisting software for
decision analysis were unlikely to produce decisior aids heneficial to a
wide variety of users and comprehensive enough to deal with all of the

procedures used to analyze decision problems.
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Therefore, this research project was undertaken, not with the aim

of producing specific automated decision aids, but rather with the objec~
tive of characterizing all of the logical and analytical steps required

to analyze a wide variety of decisions in a manner that would facilitate
the design and implementation of automated decisifon aids. Since this
characterization deals primarily with the general procedures used to an-
alyze decisions, and not with specific computer programs, we have chusen

to call it a "decision morphology'" rather than use a more computer-oriented

term like "algorithmic language".

To achieve the objectives o this research effort, a number of re-
lated recearch tasks were undertaken. The first (~«k was a characteri-
zation of various possible derision environments and an exploration of
the implications of different types of decisions for the design of appro-
priate nutomated decison aids. The next step was an investigation of the
types of decision models available for analyzing the decision situations
defined in the first task. The hird task was an i{dentification of the
steps required to construct and analyze decisfon models. From the results
of these three tasks, severial general modeling concepts were identified
which could provide the basi{s for a piflot-level system of automated deci-

gsion atds,

Although the modeling concepts described in this report appear to
provide a way to conceptualize and analyze a wide variety of decision prob-
lems, they should be applied to several realistic decision analyses to
test their practicality and generality. With additional rescarch it may
be possible to generalize the specific modeling tools discussed in this
report to the point where they will be appropriate for almost all deci-
sion modeling tasks. However, this may require the development of new
tools for modeling and analysis tu deal with decision situations for
which the concepts described here are not adequate or appropriate. At
the same time, future revearch should be directed toward unifying the

modeling tools into a single, integrated system capable of dealing with

all aspects of the decision modeling process.
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B, The Importance and Difficulty of Creating a Decision Model

Most of the existing computer programs for decision analysis deal
with decision tree calculations, or the elicitation and processing of
subjective probabilities. Since decision trees and probability elici-
tation are basic elements of decisiuon analysis, it would seem logical
that decision aids designed to help an analyst in these areas would be
among the most useful and desitable. However, in applying decision
analysis to many different types of decision problems, the SRI Decision
Analvsis Group nas found that probabilistic processing and elicitation

are not the areas in vhich an analyst or decision maker can benefit

most from automated decision aids.

At the beginning of this research project each of the project leaders
fn the Decision Analysis Group was asked to review the projects that he
had conducted and determine those aspects of the analysis that had becn
the most difficult and time=consuming., The consensus of this group was
that the most difficult part of conducting a decision analysis-=and the
arca that could benefit most from automated decisfon alds-~was construc-
ting a decision model that captured the essential elements of the deci-
sion under consideration. Probability elicitation, probabilistic pro~
cesuing, and the evaluation of decision trees all ranked below model
development in terms of the amount »f effor: requirved to carry out the

process and the potential usefulness of auto ated declision aids.

Admittedly, this informal survey covered only the experiences of one
proup of decision analysts. As a result, the importance assigned to de-
cisfon modeling may be a reflection of the methodological approach of the
Skl Deciston Analysis Group as opposed to approaches used by other analysts.
However, the survey covers a very broad range of decision problems, in-
cluding decistons in both *the public and private sectors, dectisions char-
acterized by varving degrees of complexity and uncertainty, and decisions
ranging from speciiic resource allocations to broad questions of public
policy. Furthermore recent research carried out by SRI for the Office of
Naval Research on the development of operational decision aids for task
force commanders has confirmed the i{mportance of decision modeling in the
analysis of military decision problems.

11
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It is easy to see why the development of decision models plays an im-
portant part in the decision analysis process. Decision models a!low an-
alysts and decision makers to organize and rank .n importance the maany
compiex factors associated with major decisions. By considering each part
of the model in turn aa analyst can divide a major decision problem into
a series of smaller, more manageable problems. At the same time a model
can be used to determine the relative importance of the various elements
of the decision problem. All too often decision makers become absorbed
In one aspect of the decision problem and neglect other aspects that are
equally, if not more, important. FEven a simple decision model can show
quickiy which elements of the problem deserve the most attention by vir=-
tue of thetir relative influence on the final outcome. Perhaps equally
important is the ability of a decision model to act as a vehicle for com=-
municattfon. An explicit model of all the elements of a complex deciston

allows cveryone concerned to understand and contribute to the decision

logtie.

C. The Scope of this Report

This research report {8 not a texthook on decision analysis. Rather
it is an exposition of those concepts, procedures, and models that should
be inctuded in a comprehensive system of decision aids. This report is
concerned with the application of decisfon analysis rather than with the
development of decision theory. Furthermore, it does not attempt to de-
scribe afl the ways that people have conceptualized and applied decision
analysis; rather it reflects the experience of the SRI Decision Analysis
Group, However, the discussion of decision analysis contained in this
report {8 {vtended to be sufficiently general to encompass most of the

approaches taken to applying decision analysis.

It {s assumed that the reader {s familiar with the fundamentals of
decision analysis. These are described in sevaral publications [3,4,12,13)%,
However a detailed understanding of deci{sion theory is not required to

understand most of this material.

kFisures in brackets correspond to the references,

12
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D. Overview of the Research Report

Chapter 11 discusses the characteristics of different decision prob-
lems, decision makers, and decision processes, together with the implica-
tions of these characteristics for decision modeling. Chapter IIl outlines
the different types of decision models, first by discussing the different
components that can appear in various decision models and second in terms
of more general characteristics of che entire model. Chapter IV deals with
the process by which decision problems are modeled and analyzed. This {is
the process that will be facilitated by the development of automated deci-
sion aida. Chapter V contains the most novel findings of this research
effort: several decision modeling concepts that can be understood by
decision makers and are suitab.e for computer Implementation. These con=~
ceptual tasks can be applied in the context of the decision modeling pro~-
cess described in Chapter IV to produce the types of decision models dis-

cusgsed in Chapter I11. The concepts presented in Chapter V provide a bhasis

for designing and constructing a pilot-level system of automated decision
aids.
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I1  TYPES 0" DFCISION PROBLEMS: 1IMPLICATIONS FOR MODELING

Whether or not an automated decision aid i{s useful for analyzing a
decision problem depends to a large extent on the characteristics of the
decislion being analyzed and the decision maker for whom the analysis ls
conducted. It is doubtful that any single decision aid will be equally
applicable to all of the decision problems that one might wish to analyze,
Furthermore, a decision afd that is helpful to one decision maker might
not be useful to a decision maker who has a different level of experience
in analyzing decisions or who must operate within a diferent organlza=-

t ifonal structure, Developing a comprehencive system of automated decision
alds requires understanding the range of decisfon problems to which it

would be applied.

It would be difficult to enumerate all of the different types of de-
cisgion problems that one might wish to analyze. However, there are certaln
characteristics of decision problems and declsion makers that clearly in-
fluence the approprlateness of various modeling procedures and related com~
puterized decisfon alds. These characteristics and their implications

for modeling and analyzing decislons are discussed {n this sect ion.

In attempting to define the different types of declislon problems,
ore must bhe careful to distinguish between the characteristics of the
deci{sfon environment ani the characteristics of the model that is devel=-
oped to analyze the decision. A statement such as, "That is a lincar
programming problem" may be more descriptive of the model used to analyze
n declisfon than It Is of the aecision environment. Since models are by
definition abstractions of reality, it {s quite appropriate that a decision
model and the situation it represents have different properties. For ex-
ample, an inherently non-linear decislon problem could be represented by
a4 linear model. The discussion that follows deals with the characteristics
of decision environments, not decision models, although some of the same

characteristics could be used to describe models.

15

A 02 s A i bt . sV bt 3 ML 1



The list of characteristics described in this section is not exhaus-
tive, There are many ways to characterize decision problems and decision
makers, but some attributes are more useful descriptors than others. Taken
as a whole. the following characteristics provide the dimensions for de-

scribing any particular decision problem.

A, Characteristics of Decisions and Decision Environments

Some of the major determinants of the appropriateness of various de-
cisfon analytlc procedures are the physical characteristics of the environ~
ment as they are percelved by the decision maker. A decision model--and the
procedure used to build it--need not have exactly the same characteristics
as the decision environment, but the two obviously should be closely related.
The following sections outline the Implications of various characteristics

of the decision environment for developing an approprlate model.

1. Time Dependence (Static vs. Dynamic Environments):

There are many decision problems {n which the basic elements of
the decision environment, and even the relatlonships among these elements,
change with time. Models with time=-varying parameters can be used to rep-
resent such situations, but dynamic models are inherently more difficult
to analyze than statlic models. When attempting to model a time-varying
decision envirnnment, an analyst must determine whether variations with
time wugt be represented explicitly or whether the time-dependent charac~-
teristics of the environment can be averaged or aggregated so that they
can be represented by a statlc model. Fortunately, dynamic decision 1ob=
lems can often be adequately approximated by models with static parameters
or functlonal relationships. One way to simplify the time dependence in
a4 model {8 to represe:nt time as a series of discrete intervals. 1In that
way the value of model parameters in each time interval can be consl!dered
as separate quantities related to each other by functions that describe

how they change from one time period to another.

In some ways time can be considered a model parameter just like
any other element of the model. The dependence of some quantity on time

can be modeled in the same manner as its dependence on other model parameters

16
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Assumptions about the level of detail required to specify time are similar

to those for other model parameters.

However, time possesses certain characteristics that distinguish
it from other model parameters. It provides a natural index with which
other model parameters can be identififed. 1t also defines the order in
which decinions are made and states of information are changed when these

elements are functions of time.

2. Sequence of Decisions and Information States (Sequential vs.

Nonsequential Decision Environments):

Frren if the major elements of a decision problem and thelr inter-
relatlonships are not functions of time, it may be necessary to Investi-
gate the implications of making a decision based on several possible states
of Information. For example, a millitary commander may decide on the best
way to position his forces without knowledge of the enemy’s position, and
then find It necessary to reconslder the same decision after receiving
new {nformation from his Intelligence sources. 1In fact, he could find
himsel . making a whole sejyuence of resource allocation and reallocation
decisious based on changing states of information, even though the config-
uration of enemy forces was not actually changing with time. Thus, chang~

ing states of Information can occur {n both static and dynamic decision

environments.

Changes In the state of information can affect both the estimates
of parameters in a decision model and the structure of the model itself.
Models In which the structural relationships among parameters depend on

changing states of Information tend to be complicated and difficult to
gpecify.

Explicit consideration of changing information states Is usually
required In a decision model when there is a sequence of decislons to be
made at the same time that the information is chunging. In this case it
{8 necessary to analyze each decision for each of the possible information
states that might exist when the decision must be made. Sequential deci-
sions can be modeled efficiently if one can identify repetitive rr similar

information states and combine them to reduce the size of the model.

17
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Sequences of decisions can themselves lead to changing states

of information, because the decisions produce new informatinn about the
environment or cause significant changes in the environment itself. De~
cisions that produce new information about the environment are generally
information~purchasing decisions, such as initiating an intelligence
activity or conducting research to determine the operating characteris-
tics of a new weapons system. Other decisions are made with the intent
of directly influencing the enviroument and producing specific results,
As changes in the decision environment take place, the decision maker

often receives new information that changes his view of the problem.

3. Uncertainty (Probabilistic vs. Deterministic Decision

Environments):

Decision makers almost never know the exact consequences of
choosing an alternative at the time that they make a decision. 1In an
attempt to reduce the uncertaintv associated with their decisions, deci~
sion makers will often allocate significant portions of their resources

to gathering information,

Many attempts have been made to analyze uncertain decision
environments with deterministic models. However, the use of determin-
istic models often leaves the decision maker wondering whether they ade-
quately describe all of the contingencies that might occur, Determin-
istic models are particularly inappropriate for information-purchasing
decisions, since the objective of these decisions is to reduce uncertainty
about the environment. Deterministic models do a poor job of measuring

changes in the level of uncertainty.

Since probabilistic models are more difficult to process than
deterministic models, the question that must be answered in any decision
modeling effort is: To what extent should uncertainty be modeled ex~
plicitly? Although various modeling techniques have been developed to
help answer this question (such as assessing probability distributions
only for those model variables that have the greatest effect on the mod-
el’s output), the appropriate level of probabilistic modeling depends
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on the time and resources available for modeling as well as on the nature
of the decision environment., Often a deterministic model can be used to
gain an initial understanding of a decision problem before a more complete
probabilistic model is developed. In fact, deterministic models often
evolve into probabilistic models of the same situation as model variables
and relationships are redefined in probabilistic terms.

One of the primary reasons for modeling uncertainty explicitly
is that human intuition 1is notoriously poor at determining the effect of
interaccions among uncertain quantities. Individuals tend to think about
decision environments in deterministic terms, even though they recognize
tkat there are important elements of the problem that are beyond _heir
control and about which they have limited information. For this reason

the probabilistic model can produce insights that are not obvious from
intujtive reasoning.

4, Complexity (Simple vs. Complex Decision Environments):

Decision environments can range from those with a few basic
elements to those comprised of large numbers of interrelated components.
However, complex decision problems do not always lead to complicated de-
cision models. Often many of the components inherent in a decision situ-
ation can be aggregated to form the variables of a simple model. For
example, economists regularly model the many millions of business trans-
actions that occur each day in the national economy in terms of a few
aggregate parameters like gross national product, personal consumption,

and investment,

Trying to determine the proper level of simplification and
aggregation to use in a decision model is probably the most difficult
part cf modeling. On the one hand, simplified models are relatively
easy to analyze and explain to others., However, the more specific ele-
ments of the decision environment are aggregated into a few global param-
eters, the more difficult it becomes to define exactly what those param-
eters mean, Furthermore, oversimplifying a decision model can destroy

one of the model’s primary benefits: 4its ability to break a decision
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down into its componenr parts and let the decision maker deal separately

with each of the components.

The complexity inherent in a decision situation can itself be
a source of uncertainty. If it is necessary to conceptualize and model
the situation in terms of a relatively small number of aggregate param-
eters, the decision maker may find himself uncertain about the manner

in which the aggregate parameters interact even though he might be quite
knowledgeable about the many detailed interactions that occur in the en-
vironment. In the process of developing a simplified model of a complex
decision situation it may be necessary to introduce uncertainty into the

model to avoid a more detailed analysis.

5. Continuity (Continuous vs. Discrete Decision Environments):

In some decision situations there are only a few discrete aiter-
natives avallable. For example, an officer in charge of alr defense might
have to decide which of three avallable weapons systems to assign to an
attacking enemy alfrcraft. 1In other situations, the decision maker can
select any value over a continuous range, for example when one (8 dete:-
mining the proper elevation of an artlillery pilece. Similarly, elements
of the decision environment that are beyond the decision maker’s control
can be classified according to whether they take on only a few discrete

values or can vary over a specified range.

In reality, the distinction between continuous and discrete
quantf{ties is somewhat blurred. When trying to declide what percentage
of his forces to hold in reserve, the commander of a large force might
have so many discrete alternatives that his cholce is essentially nne of
selecting a fraction of his force on a continuous scale of zero to 100%.
This distinction may seem subtle, but it has a major Impact on the nature

of the model used to analyze the decision.

If the decision environment i{s characterized by essentially
continuous quantities, such as economic costs and benefits, the rela-
tionships among these quantities can often be modeled by continuous func-
tions or equations. Alternatively, i{f major elements of the decision
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environment are inherently liscrete, thelr interrelationships are usually

represented by discrete operators such as matrices, difference equations,
or a detafiled enumeration of the values of a certain parameter given all
of the possible combinations of the variables upon which {t depends. A
decision tree can be viewed as an example of the latter type of transge

format lon.

Whether a particular decision is modeled with continuous or

discrete quantities depends In part of the level of aggregation inherent

in the model. One way to simplify a decision model is to approximate the
cont inuous quantity with a variable that takes on only a few represent=-
ative values, For example, it might be sufficlient to model possible states
of the weather in terms of sunshine, rain, or snow even though there are
many possible amounts and types of preclpitation, Decision environments
characterized by a high degree of complexity are often represented by dis-
crete decision models (n order to minimize the slze of the model and the

analytical effort required to solve {t.

6. Unigueness (Unique vs. Repetitive Decision Environments):

The applicability of varlous declision modeling techniques is
partlally determined by the frequency with which similar decisions must
be made. Many of the methods of classical statistics may be invoked when
dealing with repetitive decisions, such as when to reorder parts for an
inventory. Furthermore, the common elements of repetitive decisions can
be analyzed and modeled prior to the time that a decislon needs to be made.
This prior analysis makes it possible to specify and even automate decision
rules so that the decision can be made on a routine basis. As a result,
repetitive decisfon models tend to he delegated to subordinates even
though the declsions may be extremely impcrtant to the organization. The
allocation of weapons systems to fleet defense is an example of an impor-
tant, repetitive decision that is delepated to specially-trained, subor-

dinate decision makers.

Unique decisions require both the development of a new deci~
slon model and a representation of states of information based on little,
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if any, statistical data. In this case both the model structure and the

values of model variables must rely to a large exteunt on subjective esti-
mates. The analysis of unique decisions is primarily focused on gaining
an understanding of the problem rather than fine~tuning a model to the
point where it can be used routinely and efficiently for dealing with

similar decision situations.

7. Resources Affected by a Decison (Major vs. Minor Decisions):

The extent to which a decision model is developed is partially
determined by the scale of resources affected by the decision. There
are two resource levels that characterize the decision environment: the
range of outcomes that might result from the decision, and the level of
resources allocated by the decision maker. The level of resources allo-
cated need not determine the importance of the outcomes. Even if the
decision maker has limited resources at his disposal, he may be in a
position to influence events of major importance. For example, a small
but strategically located military unit may have move influence on the
outcome of a battle than other units with more resources at their dis-

posal in inferior positions.

It is worthwhile expanding a decision model whenever the cost
of the additional effort is outweighed by the benefits that are likely
to occur from a deeper understanding of the decision environment. As
the scale of resources affected by the decision goes up, 80 do the bene-
fits that can be expected to accrue from the insights produced by addi-
tional modeling. Thus, formal decision models generally find application
in the analysis of major decisions involving significant levels of re-
sources, while decisions with less important consequences tend to be

made on an intuitive basis.

8. Scope of Decision (Specific vs., Policy Decisions):

Some decisions deal with specific resource allocations. Other
decisions are designed to set policy and give guidarce to those who must
make specific decisions. Models of policy decisions tend to be at a more
aggregate and less detailed level than those of the specific decisions
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for which they provide policy guidelines. However, in the course of mod-

eling a policy decision, it may be necessary to analyze specific decisions
that might be affected. For example, when setting policy as to how his
forces should respond to various enemy actions, a commander may wish to

analyze briefly the decisions that may be faced by his subordinates.

The effect of policy decisions is to define the objectives
that should be used by others in analyzing specific decisions, thereby
simplifying the decision models needed for the relevant specific deci-
slons. As a result, models of policy decisions must often incorporate a
more detalled consideration of complex preference issues than do models

of specific decisions.

Policy decisions are often used to coordinate the decision-making
activities of several individuals or organizational subdivisions. This
means that models of policy decisions often must take into account the
interactions of several decision makers. This requirement tends to com=
plicate the analysis and expand the size of the decision model, even
though the model deals primarily with aggregate parameters. Furthermore,
since policy decisions are usually designed to give guidance to a number
of subordinate decision makers, it is usually necessary to model explicitly
the sequence of information states associated with specific decisions.

This requirement also tends to expand the size of mcdels dealing with
policy decisions,

9. Urgency (Planning vs. Crisis Decision Environments):

The time available for making a decision has a significant
effect on the kind of modeling that is possible. If a decision must be
made immediately, detailed explicit modeling is not possible. However,
the question of how soon a decision must be made is itself usually a
decision. Even though the cost of delaying a decision is high, it may
be wise to spend some time carefully considering its implications, A
bad decision made hastily may be worse than a delayed decision.

It is often pussible to anticipate and even model at least
some elements of a crisis decision before the crisis occurs. Many crisis
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decisions can be reduced to manageable proportions if those clements of
the problem that can be snticipated are subjected to careful analysis be-
fore the crisis vccurs., For example, a naval cummander considering the
possibility of an enemy submarine attack could develop a model of the de=-
cision he would face In that situation, Iincluding such known parameters

as the speed and armaments of his ships. The use of such a partially pre-
structured model would make Lt possible for him to analyze quickly a spe-~
ciflec combat situation by updating the model with a description of the

situation at hand.

There will always be some urgent decisions that cannot be antl-
cipated. Because of the limifted time available, models for such decisions
tend to be composed of a small number of aggregate parameters that de=
scribe only the most important elements of the problem. The main purpose
of such models (8 not to give the decision maker a detailed understarding
of the counsequences of the decision, but rather to help him sort out the
major clements of the decision and be sure that nothing important is over=

looked.

B, Characteristics of Decision Makers

Since deci{sion models are relevant only {f they are put in terms that
are meaningful to the decision maker, the characteristics of the deci=-
slon maker are as important as those of the decision environment In deter-
mining the nature of an appropriate model. The [mplications of varlous
character{stics of declsfon me'.ers for modeling and analyzing declslons

are discussed {n the following paragraphs.

1. Complexity of Preferences (Simple vs., Complex Preferences):

A problem that often characterizes decisluns, especially thosc
in the public sector, is the problem of determining the criteria with
which to judge the outcome of a decision. Analyses of filnanci{al decisions
are often based on the assumption that the objective 1Is to minimize the
net cost or maximize the net profit that results from a particular deci-
sion. Yet quite often the financial decision maker is concerned about
many other things besides profit and loss: the effect of the decision on
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the organization’s public image, the internal politics of the organiza-
tion, the decision’s effect on morale, and the possibility that a bad out~

come could jeopardize the decision maker’s career. Obviously preferences
like these are difficult to quantify, Military and publie sector decision
problems, which often involve Buch basic considerations as the value of

human life, contain preferences that are even more difficult to quantify,

However, the fact that preferences are difficult to quantify
does not mean that it is impossible to model them., Fortunately, pref=-
erence modeling has been the object of considerable research over the
past several decades. The result of this research hus been to identify
various types of preferences (preferences among various attributes of
possible decision outcomes, time preference, and risk preference) and to
develop procedures for assessing ard combining each of these preference
types within a single decision model. 1In decision problems containing
relatively simple and easily identifiable objectives, it is often unnec-
essary to model explicitly certain types of preferences (such as time and
risk preference). The subject of preference modeling is discussed in more
detail in Chapters IIl and IV of this report,

In many public sector decision problems, the difficulty associ-
ated with modeling preferences is compounded by the lack of a clearly iden=
tified decision maker or decision-making procedure. Decisions made "in
committee' or as a result of competition among various agencies may re-
quire a rather detailed assessment and modeling of the preferences of all
of the competing parties in order to identify areas of possible compro-
mise and focus the debate on the underlying differences and objectives.

A decisjon analysis need not explicitly model the adversary process to help
in its resolution. Usually a decision model can be constructed based on
the assumption of a single set of preferences, and then each of the inter=-
ested parties can exercise the model using his own preference structure,
Typically, this sort of analysis demonstrates that certain preference dif-
ferences are not worth arguing about because they lead to the same deci-
sion. (Explicit modeling of the process by which several decision makers
resolve their differences is another level of analysis which is discussed
separately balow in Section C, Characteristics of the Decision Process.)

23

R P

N eor e

e o i o Bt o 48, L0 e B T

EER T Py Sy v g

g g ot aar S




ommnere s mBa B LR SRR

2. Resources Available for Analysis (Limited vs. Extensive
Analytical Capability):

Closely celated to the scale of cesources affected by a deci-
sion is the level of resources made available for analyzing the decision.
The difference between the two quantities ig that the level of resources
affected by the decision is usually determined by the decision environment
while the resources avajilable for analysis can be determined by the deci-
sion maker. Determining the level of resources to allocate to the anal-
ysis of a decision is {tself a secondary decision which could be analyzed.
A tertiary decision would then be the determination of how much time and
effort to devote to the secondary decision, and so on. In most situations
it is doubtful that a detailed analysis of these second- and third-order
decisions is warranted. As a rule of thumb an {ndividual might set a pol-
icy that for every major decision he will use some percentage (say one
percent) of the resources to be allocated by that decision to determine

the best method for making the allocation.

There cre several types of resources that a decision maker

could devote to tne analysis of a decision problem, To a cercain extent
each type of resource is needed for the analysis, and the level of each
resource allocated has a significant effect on the nature of the result-
ing decision model, The types of resources include: the decision maker’s
personal time, the time of individuals with expertise in various aspects
of the particular decision problem at hand, the assistance of analysts
with training in modeling decisions, the involvement of competing or coop-

erating decision makers, and the support of data-processing facilities.

The application of these resources to the analysis of a deci-
sion problem allows the decision maker to consider, and possibly model,
the ¢lements of a decision problem in preater detail. However caution
should be exercised in developing detailed models and analyses of deci-
sion problems. All too often, detailed models are constructed to analyze
elements of a decision problem that do not have a significant effect on

the decision outcome. As resources are allocated for modeling a decision

situation in detail, it 4is important that these resources be constantly
focusad on the most important elements of the decision problem.
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3. Experience and Training in Analyzing Decisions (Intuitive vs.
Analytical Decision laking):

The process by which a decision is reached depends on the
backgrounds of the individuals involved in the decision., Some people
prefer to reason in verbal, non-quantitative terms; to them, a detailed
quantitative model might be inappropriate even if the resources to con-
struct one were available. Other decision mukers find quantitative models
and analyses useful as a check for their own intuitive reasoning. Still
others find them the only satisfying decision procedure. An important
requirement for constructing a model to assist a decision maker with lit-
tle experience in analyzing decisions is that the conclusions derived
from the model be expressed in terms that are meaningful to the decision
maker, This usually means that model parameters must be carefully defined
to match the way that the decision maker thinks about the problem and that
complicated interactions within the decision model must be summarized in

intuitive terms,

The types of decision models appropriate to a particular sit-
uation depend not only on the analytical training of the decision maker,
but also on the training of the individuals supplying information to the
decision maker., If the people with expertise about the decision environ-
ment have not been trained in the procedures for estimating subjective
probability distributions, the development of a probabilistic model re-
quiring such distributions as inputs would necessitate the training of

the various subject experts before the model could be used.

When it comes to modeling, a little training may be worse than
none at all, All too often decision models are deviloped that depend more
on an individual understanding of certain analytical techniques than on
the nature of the decision problem under investigation. A decision maker
may unconsciously exclude certain types of models from consideration, even
though they might be appropriate for describing a particular decision envi-
ronment, hecause he was either unaware of their existence or intent on
structuring the model in such a way that a particular analytical technique
would be applicable. As decision makers and analysts gain experience in
modeling a wide variety of decision problems, they tend to develop models
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that rely less on specific procedures or techniques and more on the natutre

of the problem being analyzed.

C. Characteristice of the Decision Process

The term “decision process" refers to the interaction of the in-
dividuals associated with making a decision. Even if there is only one
decigjion maker i{n a particular situation, his decision may be influenced
strongly by the information supplied by other individuals or by the social
or organizational structure within which he finds himself. Obviously the
process by which people interact in order to reach decisions has a strong
influence on the types of decision models appropriate for analyzing deci-

sions,

l. Number of People Involved in the Decision (Individual vs.

Mult i-person Decision Making):

Although it 18 common to refer to the "decision maker,”

major
decisions are seldom made by a single individual in isolation. FEven
though one person may appear to be the decision maker, his options

and objectives may be strongly influenced by the decisions of others,
especially when his decisions must conform with organizational policy.
Furthermore, the information upon which the decision is based and the
manner in which it is analyzed may be the result of interaction between
a decisfon maker and a large number of other individuals. The manner
in which the decision is modeled will depend on the number of decision
makers, experts (suppliers of information), and analysts involved in

the decision-making process.,

When there 18 only one decision maker, a decision model will
be concerned primarily with his alternatives, preferences and information
about the environment; in this case, the environment 1is not trying to
anticipate his actions., However, when there are two decision makers,
each must take into account the possible actions of the other. Each
decizion maker is faced with the task of estimating not only his own
state of knowledge but also that of the other individual, who {n turn
must assess the amount that the first decision maker knows about his
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information, and so on, Attempting to model situations where "1 know

that he knows that I know that he knows, etc.” i{s & very difficult pro-
cess unless a number of simplifying assumptions are built into the model,
One assumption, which leads to the standard game-theory approach to deci-
sion making, is that the decision makers share the same information about
the environment and are caprble of analyzing all of the possible inter-
actions that could occur between them., More complicuted and realistic
game~theoretic approaches to multi-person decision making assume that the
decision makers haQé different states of information which are unknown to
their competitors, but these approaches often produce open~ended models

that are impossible to analyze.

Yhen there are more than two decision makers who can affect the
same outcome, modeling the decision process becomes even more difficult
hecause there are now enough people involved to permit the formation of
coalitions. 1In addition to making his primary decision, each individual
must make a set of secondary decisions concerned with reaching agreements
with other groups of decisio .ukers. Although conceptually straightfor-
ward, models of coalitions among decision makers tend to be enormously

complicated and difficult to solve.

Fortunately decision situations in which there is only one de-
cision maker with several people supplying information about the decision
environment are considerably easier to model than those with multiple de-
cision makers. When there are several, possibly conflicting sources of
informatlon about the environment, a decision model should be designed to
allow each piece of information to be incorporated into the analysis.
While this may produce a somewhat more complicated model, the resolution
of conflicting pieces of infornation does not require major changes in the

tvpes of models used to analyze decisions.

2. Organization and Interaction of People Involved in the Decision

(Structured vs. Non-structured Decision Processes):

The analysis of situations involving several decision makers
is greatly simplified if the decision makers find themselves in an organ-
izational or economic environment that governs or limits the manner in
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which they interact with each other. For example, in an economic market

composed of many decision makers, none of whom controls a sufficiently
large portion of the market to determine the prices of goods and services,
the decisions of one individual are effectively isolated from those of
another, although collectively their decisions determine the price and

quant ity of every item in the market.

There are a number of different ways in which the interactions
among decision makers are controlled. In hierarchical organizations,
it is safe to assume that an individual’s decision will override those
of others lower in the organizatfon., While this assumption may not
always hold in practice, it is usually sufficient for the development of
decisifon models. Economic interactions are somewhat less structured
but relatively easy to define. The degree to whi~h one decision maker
must take into account the decisions of others depends on such factors
as their relative shares of the market and the relative costs of various
outcomes for each decision maker. The interactions of political decisions
are often the least structured and the most difficult to make. Models ot
political decisions usualiy contain limiting assumptions about the extent

to which each decision maker tries to outguess the others, and as a result

these models tend to be very crude approximation of the political process.
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I11  TYPES OF DECISION MODELS

This section deals with the various types of models that can be used
to analyze decisiona, The characteristics of different decision models

are discussed both in terms of the components contained in the model and

its general mathematical structure., The purpose of this section is not
to describe specific models but rather to present an overview of the gen-

eral characteris-ics common to most decision models.

For the purpnses of this discussion, a decision model is any quanti-

[ y—

tatlve or loglcal abstraction of reallity that is constructed and analyzed

to help somebody reach a decision. .Thia definition is broad enough to

fnclude almost any mathematical representation of reality, and appropri=-

R T, 10 oy

ately so, for almost every effort to develop a quantitative model is ul=-

timately justified by its potentlal for aiding some form of decision making.

AT AT

Even models that do not contain an explicit representation of the decislon-

making process are often used to gain insight into the environment sur-

B

rounding a decision.

e i o v

A, Components of a Decision Model

e T

Decision models can be characterized by the types of components they
contaln, by the relative Importance of variocus components, and by the way

In which components are represented and interpreted.

The types of components in any decision model can be classifled as
follows: syrtem variables, which represent elements of the decision en=

vironment; the sequence or timing of Information sbout the system vari-

i T TR Wb

ables; the structural linkages or Interdependencies among the system var-

iables; and a specification of the decision maker’s preferences among

% possible states of the world as represented by the system variables.
¥

Each type of component may have different names in different types of
models, but this classification is sufficiently general to encompass
the elements of any decision model. The various components are describad

in more detail in the following sections.
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1. System Variables

System variables are those quantities chosen to represent ele-

ments of a decision environme:c that can exist in several possible states,
Identifying and defining all of the system variables contained in a model
dete mines the scope and specificity of the model: the range of possible
sitrations that the model can represent and the degree of detail with which
the model approximates reality. Specifying a particular value for each
system variable coupletely drnfines the state of the environment as repre-
sented by the model. The only variables in the model that are not system
variables are those that describe the decision maker’s preferences --
preferences among states of the environment specified by the values of

the system variables,

System variables can be divided into two categories: those that
are directly and completely controlled by the decision maker, and those
that are not. System variables that are completely controlled by the deci-
sion maker are called decision variables. All other system variables, in-
cluding those that are influenced by the decision maker’s actions but are
not completely under his control, are called state variables (or environ-

mental variables) since they define the state of the decision environment.

Decision variables must be defined in such a way that they re-
present the alternatives available to the decision maker, rather than
outcomes that are only partially under his control. For example, a bus-
inessman may or may not be able to control the price at which he sells
his product depending on the nature of the economic market within which
he operates., A monopolist is free to specify the price of his products;
for him, price is a decision variable. A businessman in a market charac~-
terized by many producers (such as a farmer selling grain) may have to
accept the price determined by the marketplace; for him price is a state
variable, In some cases, a system variable can either be a decision var-
iable or a state variable depending on how it is used in the model. For
example, a farmer has the option of demanding any price he wishes for his
grain, knowing that if the price he specifies exceeds the market price he
will not find a buyer. A model that included the farmer’s decision whether
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to set the price of his grain at the prevailing market price would con-
tain the farmer’s price as a decision variable.

State variables define all of the elements of a decision model
other than a decision maker’s alternatives and preferences, State vari-
ables can be determined in a two~step process. First, the variable itself
is {dentified and defined. The definition includes the range of possi-
ble values that the variable can assume and the scale along which these
values are measured. Second, the value of a state variable is specified,
either at a particular level or in terms of a set of possible values with
associated provabilities. The value of a state variable need not be known
at the time that a model is constructed. In fact, one of the purposes of
the model may be to determine the value of certain state variables. However,
a major portion of the modeling process may be devoted to defining state

variables carefully.

State variables can be classified as aleatory or fixed depending
on whether the decision maker’s state of informaion about a variable is
represented by a probability distribution or by a single deterministic
value., The derision maker’s state of information and the relative impor-
tance of a state variable in determining the output of the model govern
whether a state variable is represented probabilistically or determinis-
tically, Since it is relatively difficult to process aleatory state var-
iables, decieion models ty :ically include the assumption that all but the
most important state variables can be represented by a fixed or determi-

nistic value.

State variables can also be classified as either exogenous or
endogenous. Exogenous state variables are the inputs to the model.
They are not influenced by the values of other system variables, and they
must be specified before the model can be analyzed. Endogenous state var-
iables are those whose values or probability distributions are determined
by the model; they are usually not specified by the user. In some cases
an endogenous state variable will be specified by the user in order to
exercise a subsection of the model for which the variable is &n input.
It is also possible for an internal or erdogenous state variable to be-
come exogenous by reversing the linkages or transformations among state
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variables., The reversal of transformations within a model is discussed
in more detail in the following sections.

A third way of clasuifying state variables is by whether or
not they are affected by the decisions described in the model. State
variables that are not affected by the actions of the decision maker
are included in the model to specify possible states of information or
situations in which the decision maker will have to select a course of
action, State variables that are affected by a decision maker’s choices
are used in a model to represent the way in which a decision maker inter-
acts with his environment. Since state variables that are affected by
the actions of the decision maker are a function of decision variables,

they must be endogenous or internal state variables.

A fourth way of classifying state variables is according to
whether or not their values are known with certainty wher any of the de-
cisions represented in the model are made. A revealed state variable is
one whose value is known prior to the selection of a course of action
specified by one of the model’s decision variables. Unrevealed state var-
iables are specified only in terms of probability distributions at each
of the decision pointa in the model. Unrevealed state variables are {n-
cluded in decision models primarily to specify the range of outcomes that
could occur as a result of the actions taken by a decision maker. Spec-
ifying the things that might happen after a course of action has been
selected facilitates the assessment of o decision maker’s preferences by
allowing him to separate his state of information about the occurrence

of various outcomes from his preferences among the outcomes.

Those system variables that are direct inputs to a model of the
decison maker’s preferences are called outcuome variables., Outcome vari-
ables can be either state or decision variables, The possible values that
these variables can assume are called outcomes. Outcomes are those quan=

tities that a decision maker would llke to know in order to determine the

desirability of a particular state of the world as represented in the model.

Outcome variables ace typically determined by asking the decision maker a
question such as, "If you had to leave on a long vacation shortly after
waking a decision and could not find out what had happened until many years
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later, which quantities would you most like to know ia order to see how
things had turned out?"

2. Sequence of Information States

One of the essential elements of a probabilistic decision model
is the order in which information is revealed about aleatory state vari-
ables, Since the order in which information iu revealed controls a deci-
sion maker’s state of information, it also influences his decisions,
Specifying the sequence of information states in a decision model defines
the order in which aleatory state variables are revealed. This specifi-
cation does not define the effect that revealing a state variable has on
the probabilistic description of other state variables contained in the
model. The specification of the sequence of information states in & de=-
cision model can be made independently of an asseasment of the manner in

which new information changes the decision maker’s state of information.

Defining the sequence of information states in a decision model
is not the same as upecifying the time dependence of the system variables
and their relationships to each other, For example, if the initial posi-
tion and velocity of a spacecraft 1{s known, its trajectory can be calcu=
lated as a function of time. If the decision maker is uncertain about
the spacecraft’s initial position and velocity, his state of informction
about its position at any future time can be represented by a probability
distribution. A model of the decision to make corrections in the course
of the spacecraft might include specification of the times at which the
decision maker will receive new information about the actual position of
the spacecraft. The timing of this new information muy be completely
independent of the time dependence of the spacecraft’s trajectory, and
even independent of the decision maker’s earlier states of information
about the trajectory. Thus the sequence of variable revelation and their

time dependence can be specified independently.

The order in which aleatory state variables are revealed can
affect the decision process if their revelation is interspersed with a
series of decisions. In this case a change in the sequence of infor-

mation states can affect the decision maker’s best course of action. On
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the other hand, if the order in which two aleatory state variables are

revealed is reversed, but no decisions are made between the time that the

two variables are revealed, the change in the sequence of information
states will not lead to a new decision.

The order in which information is revealed in a decision model
need not be the same as the order in which information is assessed. For
example, we might assess the likelihood that a forecaster will correctly
predict a rainy day even though a decision is based on the likelihood of
rain given the weather forecast. The rules of probability theory can be
used to transform states of information assessed in one order into those
that occur if the sequence of events 1s altered. As a result, decision
models may require the specification of two sequences of information

states, one for assessment and one for use in the model.

3. Dependencies Among System Variables

A decision model must contain information about the manner in
which system variables are linked together. Like system variables, the
structural linkages can be either static or dynamic and either determi-
nistic or probabilistic. Furthermore, the relationships among system
variables, like the variables themselves, can be defined in two steps:
an identification of the fact that one set of system variables depends
on another, and a specification of the way in which the values of one

set of system variables can be derived from the other.

For example, a decision model could contain a velationship giv-

ing the position of an aircraft in terms of its location at takeoff and

its velocity and heading after takeoff. The exact transformation by which

the location of the aircraft is derived from the other quantities need

not be specified to show the relationship among the system variables., In

fact, the user might want to experiment with defining the transformation
at various levels of complexity and realism. ¥For instance the transfor-
mation giving the position of an aircraft in terms of its initial posi=-

tion, velocity and heading may or may not be designed to take into account

the curvature of the earth.
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1f all of the system variables related by a particular transfor-
mation are deterministic, then the transformation itself must be determi-

nistic. A deterministic transformation specifies the exact value of the
dependent state variables for each combination of possible values for the
independent state variables. Deterministic transformations can also be
used to define the structural linkages among probabilistic or aleatory
state variables. In this case the rules of probability theory are used

in conjunction with the deterministic transformation to produce the prob-

ability distribution for the dependent state variables from the probabil~

ity distribution of the independent state variables. %

However, uncertainty in the outputs of a transformation may be
caused not by uncertainty in the inputs to the transformation, but rather §
by uncertainty in the transformation itself, Probabilistic dependencies .
; , among state variables are defined in terms of conditional probability dis-
§ ! . tributions. However, conditional probability distributions arc used spar- 3

ingly in decision models because they require a great deal of effort to
specify, analyze and interpret. The nature of probabilistic dependence

18 a very complicated subject, especially when there are several dependent

variables. This subject is explored briefly in Appendix A.

. dinia,

The distinction between state variables and the transforma-

tions that link them together becomes somewhat clouded when the tranas-
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formation is parameterized. For example, one of the structural linkages
in a decision model might define one state variable as a multiple of 3
another, without specifying the exact value of the multiplier. 1In this
_% ? case, the multiplier may be varied, or even defined probabilistically,
‘ ? in order to see how changes in [ts value affect the output of the model.
é If the model is formulated in this manner, the multiplier should be con=-
. sidered a state variable rather than a part of the transformation. The ]
; transformation should be redefined to produce the value of the dependent
state variable by taking the product of the multiplier and the other in-

] . ; dependent state variable.

4 The distinction between state variables and transformations is
{ é: harder to recognize when the transformations are probabilistic because
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both state variables and model linkages may be defined in terms of probe-

ability distributfons. The difference between them is that transformations

are defined Ly conditional probability distributions {(discributions for
the output given the value of the input) while the probability distribu=-

tions for state variables are not conditional.

4, Preference Model

A decision model can be described as a mapping* from decisions
and possible states of the decision environment to a measure of preference
that indicates how well the decision maker likes the resulting outcomes.
This measure of preference is called utility, This view of a decision
model is shown in Figure 3.1, However, it 18 useful to think of a deci-
sion model as being composed of two submodels: a structural model that
describes the interactions among system variables, and an overall prefer-
ence model that describes the decision maker’s preferences among the out-
comes determined by the structural model. This decomposition of a deci-
sion model into a structural model linked to a preference model is shown
in Figure 3.2,

Outcome variables, those state variables on which the decision
maker defines his preferences, can be probabilistic or deterministic and
static or time-dependent. Thus an overall preference modcel may have to
include the decision maker’s attitude toward uncertain or rieky situations

and his preferences for outcomes occurring at different points of time,

In simple decision models the two submodels may be indistin-
guishable., For instance, decisions are sometimes modeled with interac=
tion matrices which show the decision maker’s alternatives, possible
states of nature (combinations of state variable values), and the utility
associated with each decision/state variable pair. In this case, outcome

variables are not represented explicitly.

*The phrase "mapping from A to B" refers to the mathematical process of
transforming elements in A into elements in B through some functional
relationship.
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However, most decision models are composed of separate struce-
tural and preference submodels. Because of the importance and difficulty :
assoclated with modeling a decision maker’s preferences, an overal!l pre- A
ference model is often separated into a set of submodels. There are sev-
eral ways to accomplish this decomposition based on certain assumptions

about the form of the decision maker’s preferences. The three maiu types

of submodels used to specify preferencus--value models, risk preference

models, and time preference models--are described below,

a. Value Model

A value model specifies a declslon maker’s preferences
omong deterministic outcomes that cun occur in several time periods. A
value model does not specify the decision maker’s attitude toward uncer-
tainty or risk; it must be combined with a risk preference mode! to form
a complete model of the decision maker’s preferences. However, in many
decision environments, the range of possible outcomes {8 such that the
declsion maker (s willing to evaluate uncertain situations in terms of
thelr expected values., 1In this case, specification of the value model

{s all that 18 needed to define the decision maker’s preferences,

The advantage of separating an overall preference model
{nto a value model and a risk preference model, as shown in Figure 3,3,

ia that it simplifies the process of specifying the decision maker’s pref-

erences, If his preferences are determined without the use of a distinct

value model, the decision maker must state his choices not only among com=
binatlons of possible outcomes, but also among all possible probability

dlistribut fons over the outcomes.

The process of specifying cholces among deterministic com=
binations of outcomes is difficult enough without including uncertainty,
Without a weparate value model, the decision maker must answer questions
like, "Would you prefer a situation in which you had an equal chance of
destroying efther 30X or 70% of the enemy force while losing 20X of your
own force, or a situation in which you destroyed 50% of the enemy force
and had an equal chance of losing 10X or 30% of your own force?" By
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FIGURE 3.3 A DECISION MODEL WITH VALUE AND RISK
PREFERENCE SUBMODELS

using a separate value model the decision maker can answer somewhat sim=
pler queationé. such as, "Would you prefer a situation in which you had
destroyed 50% of the enemy force and lost 20% of your own forces, or a
situation in which you had destroyed 30% of the enemy’s forces and lost
only 10% of your own forces'"? While the second question is not easy to
answer, it is certainly easier to think about than the first question.

A value model transforms deterministic outcomes, which may
or may not be functions of time, into a one-dimensional, static value mea-
surc. A value model includes not only the decision maker’s preferences
among different possible outcomes, but also his preferences among outcomes
occurring at different times. Thus it includes the decision maker’s atti-
tude toward changing the occurrence of an outcome from one time period

to another. As long &8 certain restrictive assumptions are built into
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the preference model, a value model can be constructed so that a decision

maker’s time preference is modeled separately.

Depending on how a value model is defined, the value measure
that it produces may be either an ordinal or cardinal quantity. If a de-
cislon maker is asked to specify only his preferences among possible com-
binations of outcomes, or to identify sets of outcomes among which he is
indifferent, then the value measure is an ordinal quantity. In other words,
the fact that one combination of outcomes produces a higher value measure
than another means only that the first is preferred to the second. The
relative levals of the two value measures do not indicate ! w much more

one set of ottcomes {8 worth than another.

On the other hand, Lif a decision maker specifies his pre=
ferences among combinations of outcomes by specifying how much more one
set of outcomes {8 worth than another (measured in terms of some well-
deftned unit, like money) then the value measure is a cardinal quantity.
This means that the value measure can be used to determine, not only which
combinat fons of outcomes are preferred, but also the relative values of
varlous combinations of outcores, measured in the units of the value mea=
sure, For financial and economic decisions, [t is often possible to spec-
ify a cardinal value measure, but for decision problems with many diverse
outcomes it is usually necessary that the value measure be an ordinal

quant fty.

The simplest way to construct a value model (s by simply
enumerat ing all possible combinatlions of outcomes and .hen specifying the
value measure assocliated with each combination., Often this process is
simplified by determining the decislon maker’s preferences among a few
possible s-ts of outcomes and then using this fnformation to draw approx-
imate indifference curves [n the space spanned by the outcome variables,
Once the general form of the indifference curves has been ascertalned,
they can be approximated by equations that map the outcomes Into the value

measure.,

One procedure for constructing e value model, called the
"mult i-attribute" approach, is to measure separately the decision maker’s
preferencas for various levels of esach outcome variable or attribute. This
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Thus the multi-attribute approach need not restrict the form of the value

model except for the requirement that the value measuyre be a cardinal
quantity.

-

However, the multi-attribute approach is usually accom-
panied by the assumption that the mapping, X[.], from the individual value
measure to the composite value measure is linear. With this assumption

the value model is restricted to transformations of the following form:

Ve a W0 ()] + a,Wl0,(t)]
There are many possible value models that cannot be represented in this
form. For example, this assumption would preclude a value model that spec=-

ified that the value measure was equal to the product of the various out=

comes at a specific point in time.

b, Risk Preference Model

When a value model 18 used to snecify the decision maker’s
preferences among deterministic outcomes, a separate risk preference model
muet be developed to represent the decision maker’s attitude toward un-
certainty and risk. As shown in Figure 3.3, a value model transforms the
outcomes of the structural model into a one-dimensional, static value
measure. However, since the outcomes are generally uncertain, so {s the
value measure, A risk preference model transforms the probability distri-
bution over the value measure into a single deterministic number, called
utiltty, that measures the decision maker’s attitude toward uncertainty

in the value measure.

Utility i8 a cardinal quantity that can be processed alge-
braically, but only in certain ways., The properties of utility are defined
by a set of axioms* that govern the manner in which it can be processed
mathematically. The implication of these axioms is that, 1f a decision
maker prefers one distribution of uncertain value measures to ancther,
the preferred distribution is assigned a higher utility. Furthermore,

*These axioms are described in detail in (5}, [8), and ([11}.
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produces an individual value measure for each outcome varicble. The in=-

dividual value measures associated with the outcome variable are then com-
bined to produce a single, composite vaiue measure. Since the value mea-
sure associated with each outcome variable is combined algebraically with
the other value measures, it musl be defined as a cardinal quantity. This
means that the relative value of tw> possible levels of an outcome vari-
able must be defined in terms of some measurable quantity like dollars,
years, or lives. Unfortunately some attcmpts to construct a value model
using a multi-attribute approach have used procedures that produce ordinal
value measures assoclated with each of the outcomes; these individual value
measures are then combined algebral.ally as Lf they were cardinal quanti-
ties. The composite value measure produced by a multi-attribute value
model has meaning only If the individual value m¢asures are cardinal quan-

tities.

In general, the multi-attribute approach does not restrict
the form of a vulue model, except that the value measure produced by the
model and the value measures associated with eacun of the outcome variables
must be cardinal quantities. Regardless of liow it is developed, a value
model can be viewed as a mapping V [.] , fr . the outcomes,

0o(t) = [Ol(t). Oz(t).-..l , to the value measi.re, v. This mapping can

be written v = V[0(t)). -'th the multi-attribute approach each of the
outcomes, Ol(t)’ {8 mapped onto a corresponding value measure, Wi
Each of these mappings can be wrlitten: w, = wL[ol(c)]. The composite
value measure {8 derived from the individual value measures with another

transformation:

v = x[wl, wz....] - [wllol(t)]’ w2[02(t)],...)

As long as the transformations, wi {s] 4, from the outcomes to the indi-
vidual value measures are all one-to~one mappings, it is always possible
to define a transformation, X({.], from the i{ndividual value measures to

the composite value meusure such that:
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the utility of any distribution of values is equal to the expected utilityw,

Although it is permissible to calculate the expected value of the various
utilites that might result from an uncertain situation, the utility ax-
ioms do not allow other mathematical manipulations, such as taking the
difference of the expected utilities assoclated with two uncertain situa-
tions, Since the utility axioms are equally applicable to preferences
among uncertaln combinations of outcomes and preferences in terms of an
uncertain value measure, the mathematical restrictions on how utilities
can be processed apply whether or not a preference model is used as a

whole or decomposed into a value model and a risk preference model,

A risk preference model, as shown in Figure 3.3, is a map~
ping from a value measure to utf{lity. The nature of this transformation,
especlally the nonlinearities inherent in the transformation, define the
decision maker’s attitude toward uncertalnty and risk. This transforma-
tion can be written: u = R(v] , where v is the value measure, u is

the utility and R[.,] 18 the mapping defined by a risk preference model.

A risk preference model {8 combined with a value model
that maps the outcomes {ntr tie value measure: v = V[0(t)] . Together,
these two submodels form a preference model which defines a mapping,

U[{.] , from the outcomes to utility: u = U [0(t)). The use of distinct
value and risk preference models does not restrict the form of an overall
preference model as long as U(.] and V[.) produce the same ordinal
ranking among the possible sets of outcomes, In other words, if an over-
all preference model, U[.] , and a value model, V[.] , represent the
same preferences when the outcomes are known with certainty, then it is
always possible to define a risk preference model, R[.]) , such that the
combination of the value model and the risk preference model, RI[V[.])
produce the same preferences for uncertain outcomes as the overall prefer-

ence model, U[.].

*The expected value of an uncertain quantity is equal to the sum of
all possible values, each multiplied by its associated probability.
Thus expected utility is the sum of all possible utilities, each
multiplied by its associated probability.
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There only are two assumptions inherent in constructing
an overall preference model from a value model and a risk preference model:
(1) the decision maker’s attitude toward risk is defined over all of the
possible outcomes that could occur, including outcomes that occur in dif-
ferent time periods, and (2) it does not change with time. These assump-
tions are necessary because information about the time at which various
outcomes occur 1s not contained in the value measure, the input to a risk

preference model,

Ce Time Preference Model

A preference model can be expanded even further by con-
struciing a scparate submodel of the decision maker’s time preferences. ‘
This is accomplished by decomposing the value model shown in Figure 3.3 !
Into two submodels: a single-period (instantaneous) value model* and a i

tlms preference model, Thuse sub=-models are shown in Figure 3.4, The

single period value model maps the outcome at each point in time into a
corresponding level of a time-dependent value measure. This value mea- ; 7
sure, unlike the one discusgssed previously can have a different value at
each point in time. The time preference model maps the time-dependent
value measure into a static value measure that includes the decision
maker’s preferences for the nccurrence of outcomes in different time

periods. The single-period value model produces the same mapping from

the outcomes to the time-dependent value measures at each point in time

: . since all of the decision maker’s preferences with respect to time are

” . included in the time preference model.

o A3 KA o s i g b SN A 0. il ™ 15 ¥ Mt

Although the static value measure can be either an ordinal
or cardlnal quantity, the time-dependent value measure must be a cardinal
quant {ty. 1f the time-dependent value measure were an ordinal quantity
that ranked the declision maker’s preference in any time period, but not

his preferences among outcomes in different time perlods, it would be

impossibie for the time preference model to establish preferences among

B l *Time I8 treated as a discrete quantity in this section, but the concepts
] 1 apply equally well to models where time 18 a continuous quantity.
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FIGURE 34 A DECISION MODEL WITH A TIME PREFERENCE
SUBMODEL ;

the outcomes in different time periods. For example, given that a deci- y;
sion maker prefers outcome A to outcome B in either of two time per- i
iods and that he prefers either A or B to occur in the first time i
period rather than the second, it is not possible to establish whether he ;

prefers outcome B in period 1 to outcome A in period 2 unless further

information is supplied,

1

Utility (Cardinal)

LA e Uk edeint e

Thus the single-period value model must measure

all of the possible combinations of outcomes at a particular point in time
along a cardinal value scale so that these value measures can be manipulated

by the time preference model to produce a static value measure.
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In Pigure 3.3 the value model maps the time~dependent out-
comes into a static value measure: v = V[0(t)]. 1In Figure 3.4 this
mapping is accomplished in two steps. The single-periocd value model,
S{.] , maps the outcomes at each point of time into the time-dependent
value measure, s(t). This mapping can be written: s(t) = S[{0(t)].

The time preference model, T[.) , maps the time-dependent value mea=-
sure into the static value measure: v = T[s(t)]. Thus the mapping

performed by the overall value model, V(.] , can te written:

V[a] - T[s(ill'

In general, decomposition of the value model into a single-
period value model and time preference model need not restric: the form
of the value model, except that both the time~dependent and static value
measures must be cardinal quantities. However, the assumption that the
time preference model has a particular form, such as the sum of the time=-
dependent value measures for each time period welghted by an appropriate

discount factor, does restrict the form of the value model.

A specification of the decision maker’s time preference,
either in a time preference model or as an integral part of an overall
preference model, is sometimes used in place of an explicit model of the
decision maker’s resource allocation decisions over time. 1In this case
the decision maker’s preferences may be based on both the time at which
an outcome occurs and the time at which information about the outcome is
revealed, For example, an Individual faced with an equal chance of win-
ning or losing a large sum of money one year from now might prefer to re-
solve the uncertainty now even though the time at which the gain or loss
occurs cannot be changed. I1f he knows in advance whether he will win or
lose the money, he can modify his current resource allocation decisions
accordingly., 1If the resource allocation decisions are not an explicit
part of a structural model, but are modeled implicitly as part of the de~
cision maker’s time preference, the sequence and timing of him atates of
information must be defined as an outcome. Otherwise the preference model
will be based on insufficient information.
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B. Characteristics of Decision Models

The characteristics of a decision model are only partially defined
by the nature of the model’s components. In addition, decision models

can be described by their overall structure and scope. The purpose of

this section ils to describe the global characteristics of various types
of decision models.

:
E

1. Relative Emphasis on Explicit Modeling and Asseasﬁen:

By definition, models are incomplete representations of reality. ]
Therefore, whenever a decislon maker’s preferences or state of informa- ;

tion are assessed, additional models could be developed to help determine

the assessed quantities. The designer of a decision model will always

be faced with a cholce between direct assessment and further modeling.

TSSSPL Y. T

As a result, declslon models can be characterized by the relative empha=-

sis placed on assessment and modeling.
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Simple models usually rely heavily on dircct assessments of
the decisfon maker’s preferences and state of {nformation about the

environment. For example, the interaction matrvix discussed in the

T g e X

preceeding section {8 a relatively simple model to construct, but f{t

e i i 2 bt s L Y e

; requires that the decision maker state his preferences for all possible

combinat ions of decisions and states of the environment. This type of

it

mode! requires the decislon maker to aggregate mentally the effects of
the Interactions among his decisions and elements of the environment at
the time he assesses his preferences. If the decisfon environment {s
complex, the decisfon maker may be very uncomfortable about making such
global assessments. Even {f the decision maker feels that he can make
the assessments required by a simple decision model, he should proceed
with caution. It is easy to demonstrate that humans are very poor at

asgessing the interactions of probabilistic quantities.

T, e g TR R

;
% As a model is developed, preliminary assessments may be used g
§ temporarily to represent undeveloped subsections of the model. This

- ' ; procedure allows an analysis of the simplified model to determine the

: “ importance of each subsection of the model and the relative advantage
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of developing a detailed model of that subsection. This process also

S

makes it possible to determine th. appropriate level of assessment to

uge In place of further modeling.

2. Model Complexity and Size

Another way of characterizing decision models is by the number
of system variables contained in the model and the intricacy of the

interactions among them. The complexity of a model is related to, but
not determined by, its gize. Even a small decision model, one with rel-
atively few system variables, can contain a very complicated set of
interdependencies among variables. For instance, situations in which j
the declision maker’s state of information about the environment changes

raplidly and unpredictably often require a complex decision model even

though the environment can be adequately described by a few aggregate

i varlables.

The level of aggregation used to define system variables will
affect both the size and complexity of a decision model. Model designers

are often faced with a choice between using a large number of speciflc but
sparsely-interconnected system variables or a smaller number of aggregate
varlables that are highly interdependent because they represent all of the

relat ionships among the more specific variables. The appropriate level of

el
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aggregation for system variables i{s often determined by the difficulty
assoclated with assessing the interdependencies among them. If system

variables are overly aggregated, the decision maker may find it impossible

L PR G et e

to assess intultively the intricate interactions among them, In this case

it is necessary to disaggregate some of the system variables to simplify

v
oAb

the task of assessing the interdependencies among them,

e

[ Decision makers have a great deal of difficulty comprehending

and accepting results derived from a large, complex decislon model if X

the interaction of system variables cannot be explained in a simple,

] logical manner. This often leads the model designer to make assumptions

é = about the degree to which system variables are interdependent which may
: nor may not reflect reality., Often the most limiting assumptions in a
decislon model are those related to the interactions among system variables,
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rather than assumptions about the definitions or values of vavriables, 1In

modeling efforts where the interactions among system variables have been
oversimplified, it may be useful to expand the size of the model by defining
a larger number of more specific variables whose interdependencies are

easier to define.

3. The Mathematical Structure of a Model

One of the most common ways of characterizing a decision model is
in terms of its mathematical properties, such as whether the system vari-
ables are deterministic or probabilistic, continuous or discrete, static or
t ime~dependent, and constrained or unconstrained. While these character- ]
istics may not be of great concern to a decision maker, they can be crucial
in determining the feasibility of analyzing the model and its usefulness in

describing the decision environment.

Deterministic models are those in which {t is assumed that the
state variables and the relationships among them are known with certainty.
Probablilistic models contain uncertain state variables, and may or may not

contaln uncertaln structural! lirkages among the system variables. The

simplest probabilistic models are those with few, Lf any, probabilistic
relationships among the system variables. Models with a large number of 4
probabilistic dependencies are generally very difficult to specify and

analyze.

System varlables and structural linkages can also be either
continuous or discrete., Models canr be defined with discrete system
variables and continuous transformations, but not with continuous system
variables and discrete transformations. It is often desirable to treat
time as a discrete quantity and specify probability distributions in terms

of a discrete set of possible outcomes in order to facilitate the analysis .

of a decis!on model with a digital computer.

Two types of decision models that have proven especially useful

in the work of the SRI Decision Analysis Group are: (i) those with contin-
uous state variables, some of which are probabilistic, and a set of rela-
tionships among the system variables represented primarily by continuous,
deterministic transformations; and (2) those with discrete, probabilistic
state variables and probabilistic linkages among the state variablas.
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In the first type of decision model, the structural model is

divided into two submodels as shown in Figure 3.5. Probabilistic depen-
dencies among the state variables, if any exlst, are represented by an
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FIGURE 3.6 A USEFUL TYPE OF STRUCTURAL MODEL

environmental model which is not affected by the actlons of the decislon
moker. The state variables produced by the environmental model are combined
with the decision variables in a deterministic funteraction model which

produces the outcomes., One of the assumptions contained in this type of

model (s that the actions of the decision maker du not influence his state $:
of knowledge about the state variables. This assumption, plus the decom-

position of the structural model into separate probabilistic and deter-

ministic submodels, makes this class of models relatively easy to define

and analyze.

The second type of decislon model, containing probabilistic re-
lationships among discrete, probabilistic system variables, is usually rep-
resented by decision trees. The fact that the varlables are discrete means
that their possible values can be represented by branches on a decision
tree, and the probabilistic relationships among variables are easy to spece
ify in terms of probabilities associated with variour branches of a tree.
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Decision models car also be characterized by whether or not

system variables and the relationships among them are functions of time.
It is8 common for state variables to be time-dependent, but it is quite rare
for the transformations among them to vary with time. This is partially
due to the fact that a model can often be constructed so that the time=-
varying portions of transformations are treated as state variables. This
is done in the same way that the uncertainty inherent in a transformation
is represented by a state variable. For example, when one of the depen-
dencies in a model specifies that one state variable is a time~varying
multiple of another, the multiplier can be considered a time-dependent
state variable and the transformation can be defined as one which produces
the dependent state variable from the multiplier and the independent state
variable.

Time, like any other model parameter, can be either continuous
or discrete, If time 18 modeled as a discrete variable and only a few
time periods are considered, it is pomsible to specify the occurrence
of model elements in different time periods as separate system variables,
In this case the time dependency of the model is suppressed and each of
the system variables is a stationary quantity, This allowa the user to
model a time=-varying decision environment with a decision model that 1is

essentially static.

Another mathematical property that characterizes decision
models {s whether or not the values of the system variables are con-
strained to iie in specified intervals. The inclusion of constraints
has a significant effect on the form of a decision model, in many cases
simplifying the task of analysis., Constraints are an essential feature
of certain techniques of mathematical analysis, such as linear program=-
ming. However, constraints are often crude approximations of reality,
and they may exclude from consideration courses of action that are both
feasible and desirable. For example, a model of a decision to allocate
aircraft maintenance tasks fto various repair facilities might be based
on the assumption that each facility has a certain maximum capacity.
The solution of such a model might overlook the fact that by slightly
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expanding the capacity of one of the repalr facilities the work could

be carried out in a more cost-effective and efficient manner.

In place of constraints, decision models can incorporate a
description of the cost involved in allowing system variables to take
on values beyond their normal operating ranges. In the example discussed
above, the model could include the cost of expanding the capacities of
the various repair facili’ies. Obviously this would require a somewhat
more complicated decision model, but the model would more accurately

reflect the true nature of the decision.

The appropriateness of using constraints in decision models
is influenced by the organizational structure within which the decision
maker must operate. Policy decisions in large organizations are often
stated {n the form of constraints, even though subordinate decision
makers might take courses of action more in keeping with the goals of
the orgainization 1if policy were specified in terms of tradeoffs rather
than constraints. Policy conatraints supply guidance to a decisfon
maker when he .is operating near one of the constraint boundaries, but
otherwise they are not helpful, Policy constraints are particularly
inappropriate when they are applied to state variabhles instead of deci-
sifon variables, For instance, issuing an order to a military commander
to avoid conract with the enemy while maintaining a particular position
overlooks the fact that the outcome of contact with the cnemy is partially

determined by factors beyond the commander’s control,

Often the mathematical structure of a decision model is described
by the particular solution or optimization technique used to analyze the
model. For example, one might refer to a particular decision analysis as
a4 linear programming model, a Lagrange multiplier model, oi¢ a decision
tree model. While such characterizations are often use ul for describing
the model’s properties, it is unfortunately the case that many models are
constructed specifically to make use of a particular solution technique.
The process of modeling, which will be discussed in detail in the following
section, should be oriented primarily toward developing an adequatr and
efficlent representation of a decision situation, and only secondarily to
producing a mathematical structure amenable to analysis by a particular

mathematical technique.
s4
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IV THE PROCESS OF MODELING AND ANALYZING DECISIONS

To construct and analyze a decision model, it is necessary
to carry out a number of logical procedures., These proce'ures are dis-
cussed in this chapter. They can be broken into two broad categories:
modeling and analysis., The modeling process is primarily concerned
with defining the various components of a decision model described in
the preceding section. The analysis process involves solving a model
to determine its implications for decision making, and computing the

effects of changing assumptions inherent in the model.

Figure 4.1 shows an overview of the process of modeling and
analyzing decisions. This figure illustrates the fact that the elements
of modeling (structuring and assessment) and the elements of analysis
(model solution, sensitivity analvsis, and determining the value of
information) are used iteratively to develop a decision model. 1In other
words, the model itself is used to determine which of its components
should be modified, expanded, or contracited. Furthermore, the model is
used to guide efforts to gather new information which, in turn, may
lead to a moditication of the structural definitions or assessed values

contained in the model.

Each of the steps rhown in Figure 4.1 is discusscd separately
in this section, However, none of them can be carried out independently:

each requires information and insight produced by the others.

A, Modeling

The clements of a decision situation can be modeled in two steps:
identification of model components and specification of the decision
maker’s state of {nformation about them. Thus the process of modeling
decisions can be divided into two steps: structuring and assessment.
Structuring consists of identifying the elements of a decision model, and
assessment consists of quantitatively specifying the values of variables

LT W S e b

and the nature of transformations among them.
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l. Strucruring

During the structuring process, a decision model is defined in
skeletal form., The decision maker”s alternatives, the possible ocutcomes
that could result from his actions, the external factors affecting the
outcome, and the linkages among the model variables are all identified.

Usually the wost critical assumptions contained in a mcdel==
assumptions that define the scope and nature of the modele=-are made when
its structure is defined. However, there are no rigid rules for structur=-
ing decision models. Compared to methods of assessment or analysis, the
structuring process has been the object of relatively little research and
theoretical development. The discussion that follows outlines typical
approaches to structuring decision models, but there are probably as many

variations to these approaches as there are analysts and decision makers,

The first step in developing and apropriate model structure
is making sure that the right decision is being analyzed, The need for
a decision may be recognized, but if the problem {8 defined so that ma-
jor alternatives or important elements of the environment are not con=
sidered, a comprehensive analysis will never be possible. A decision
situation can be put in proper context by identifying the decision makers
involved and the resources that each has to allocate, This simple step
can quickly eliminate facets of the problem about which a decision maker
i8 concerned but over which he has no control. It is quite possible that
the i{nitial perception of a decision situation is unnecessarily narrow or
restricted., Probing the constraints placed on a decision maker and explor-
ing his relationship with others whn i{nfluence or are affected by his de-
cision often changes the perceived nature of the decisifon. This initial
exploration of a decision is ~arried out qualitatively and intuitively,

but it forms a conceptual framework for a quantitative model,

Once @ decision has been examined qualitatively and its scope has
been properly specified, the syster variables that characterize the most
important elements of the decision environment are defined. Relatively
global system variables that compactly represent the enviromment are gen-
erally defined firat, and then are decomposed into more specific variables
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as the analysis progresses. 7Typically the definition of system variables
begins with specification of the outcome variables, and then state variasbles
are defined as they are needed to help determine the outcomes of importance
to the decision maker. This process leads to questions like, "Whar would
you most like to know in order to specify your state of information about a
particular outcome variable?"

The process of defining state variables by working backwards
from the outcomes can lead to an unnecessarily large model--one that
concains too many system variables--if steps are not taken to focus the
anzalysis on the choices available to the decision maker. Thus in
defining the state variables that would be most useful in determining
the outcomes, it may be necessary to concentrate on those that are
influenced by or define the cffects of a decision. In this case the
quest ion might be asked, "Which quantities, over which you can exert
some influence, would you most like to know in order to specify your

staie of information about an outcome?"

Obviously the process of working backwards from a variable to
others that influence it can be applied to any state variable, not just
outcomes. For instance, having determined that the equivalent annual
cost of a large plece of equipment is determined by its operating cost,
maintenance cost, and depreciated purchase cost, it then may be useful
to specify the maintenance cost as a function of the mean time to failure,
the repair time, and opportunity cost of maintenance personnel. However,
the extent to which the model should be refined and expanded can be guided
by a preliminary analysis of the model as it is being developed. (See
the discussion of sensitivity analysis later in this chapter.)

Another procedure used to specify system variables is to iden=-
tify a sequence of events that could lead from a decision to an outcome.
The development of a scenario shows only one of the possible consequences
of a decision, but a careful definition of a scenario usually exposes the
major variables that might lead to differenc outcomes. The process of using
scenarios to reveal the gystem variables that should be included in a de=
cision model iy most useful in situatious where it is possible to establish
the sequence of events over time.
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It is often the case that these two procesgses--working backwards

from the outcome variables to system variables upon which they depend and
specifying of sequences of events over time-=lead to definitions of the
same system variable, but to different sequences of information states
about the variables. Specifying system variables that help determine the
values of other variables ilmplicitly defines the order in which the state
of information about the variables should be assessed. On the nther hand,
specifying the sequence of events that could follow a decision defines the
order in which information about the variables will actually be revealed.
As discussed in the preceding sectlon, a decision moael may require two
sequences of Information states: one for assessment and one for model

solutton. A fully developed declsion model must specify both sequences,

The sequence of Information states chosen for assessment strongly
influences the ease and feasibility of assessing the existing state of
intnrmation about the decision environment. Fortunately an analyst usually
is free to specify this sequence. However, the sequence used to golve a
mode] {8 determined by the decision environment., This sequence is one of
the basic assumptions that determines the realism of a model. This sol-
ut fon sequence may be especially difffcult to determine in slituations where
events can occur in several possible sequences., For example, a mode!l
voncerned with the U.S. response to Intervention by any of several major
powers [n a reglonal conflict between two small countries may strongly
depend on the order in which {t is assumed the major powers will become
fnvolved., 1If elther sequence of information states 18 not obvious from the
declsion environment, it may be necessary to test the sensitivity of both

the model’s inputs and outputs co different sequences.

The Interdependencies among system variables are often ldentified
at the same time that the variables are deflined, but this sort of implicit
definition of model linkages may lead to an inaccurate or insoluble model.
It {8 important to include significant Interdependencies among system
variables i{n the model, but since the number of possible interdependencies
grows very rapidly as the number of system variables is increased, numerous
independence assumptions are required in all but the most trivial models.
An important part of defining the structure of a decision model is keeping
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track of the linkages among variables and the resulting flows of informa-

tion through the model. Independence assumptions that individually make
sense can easily produce unrealistic and unanticipated results if their
combined effect is to isolate or overemphasize portions of the model.

Several methods for visualizing the linkages among system variablus are

discussed in the following section.

Most of the structure of a decision model is developed to re-
late the decision maker’s choices and external influences to the outcome
variables. However, the designer of a decision model must also specify
the structure of the preference model used to evaluate the outcomes. This
is a relatively simple process since there are only a few basic types of
preference models, as described in the preceding section., To specify the
structure of a preference model one must decide whether the preference
model will include a separate value model, risk-preference model, and
time-preference model; and which procedures will be used to elicit the
desired value measures and utilities (such as the multi-attribute approach,
definition of tradeoffs, palred comparisons, etc.). The elicitation
procedures must be compatible with the type of preference models chosen.
For instance, elicitation procedures that produce ordinal quantities should

not be used with preference models that require cardinal quantities.

As the structure of a decision model i{s defined, the model
components can be tested and modified. The process of testing model
components relies on the judgment of the decision maker and his advisors,
and preliminary analyses of an evolving model. Tests of model components
can be placed in three categories: meaningfulness, completeness, and
appropriate level of detail. These tests are applied repeatedly as a

decision model is developed.

Testing a model component for meaningfulness is equivalent
to asking, "Does the proposed :presentation make sense to the decision
maker?" If the answer to this question is negative, then one or more
of the model components need to be reformulated to make them correspond

to the decision maker’s perception of the situation.
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Testing a model component for completeness means checking to

see whether some important aspect of a decision problem has been overlooked
in the current version of the model. A typical question corresponding to
this test is, "Does the model include all of the alternatives available to
the decision maker?" If the answer to this sort of question is negative,

then the type of component under consideration (in this case, the decision
variables) must be expanded to include the missing elements of the problem.

Testing a model component for appropriate size means checking
the level of detail at which some aspects of a decision problem are rep-
resented in a model and the amount of assessment and computational effort
implied by such a representation. A typical question corresponding to
this test is, '"Does the importance of this aspect of the problem justify
the detail with which it is modeled?" 1If the answer is no, the model can

be contracted by eliminating or aggregating noncritical components.

The structure of a decision model is limited by the extent to
which a decision maker can z2nticipate changes in his view of the envire-

onment resulting from new information. The effect of changes in the

decision maker’s state of information about the appropriateness of a
particular model structure becomes especially important in an attempt

to model a decision that must be made some time in the future. While a
current analysis of some future decision may clearly indicate a preferred
alternative, a new and unanticipated perception of the problem structure
may lead to the selection of another alternative when the decision is
finally made. This possibility makes it undesirable to analyze a decision
completely until it is possible to make an immediate choice, Instead the .
aaclysis of a future decislon should be based on a structure with enough |

gen.rality to accomodate possible changes in the decision maker’s percep-

tior of the problem. However, the fact that every possible future state of
information and its effect on the structure of a model cannot be foreseen
does not mean that comprehensive decision models are inappropriate for
current decisions. Decisions can only be made with whatever information is
available at the time; a model simply serves to explore the implications of
that ctate of information.

L]
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2, Assessment

During the assessment process the existing state of informa-
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tion about components of a decision model is quantified. The values of
probability distributions for state variables are specified, and the exact
nature of the transformations linking system variables is defined. In
addition, the decision maker’s preferences among possible outcomes, the

time at which they might occur, and the risks associated with each alter-

native are specified.

Fortunately the process of assessing states of information and

preferences has been the object of considerable research. While there

is not universal ugreement on how these assessments should be made, the

various procedures that have been developed are characterized more by their

similarities than their differences. Typical assessment procedures are ;

2 : discussed below.

a. Assessing State Variables

The manner in which information about a state variable is
assegsgsed depends on how important the variable is to the output of de-
cision model. Information about critical state variables, those to which
the outcomes are highly sensitive, is usually assessed in the form of
probability distributions, while less important state variables are usually
é gpecified deterministically. Development of procedures for assessing state

variables has concentrated on variocus types of probability encoding.

Most probability encoding procedures have dealt with the

R
[ r e

question of eliciting information from an individual subject. This form of

encoding must overcome the cognitive and motivational biases that distort

the subjective information supplied by an individual. Cognitive biases

s
O B .= s RN

g i are a cystematic distortion of subjective estimates caused by the way one

‘ thinks about uncertainty. For example, a response may be biased toward
the most recent piece of information simply because that information is
1 i easiest to recall., Motivational biases are distortions in an individual’s

subjective judgment caused by his perceived system of personal reward for
various responses., For example, an individual may want to bias his response
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because he perceives that his subsequent performance will be evaluated by

a comparison of his response to the actual outcome.

Technicues for eliciting information may be classified
according to the type of questions asked., Probability methods require
the subject to assess the probability associated with a particular value
of a state variable. Value methods require the subject to assess the value
that corresponds to a particular probability. Mixed probability-value
methods require the subject to assess values on both the outcome and
probability scales; the subject essentially descibes points on the cumu-

lative distribution of an uncertain quantity.

These encoding methods can be used in either a direct or
an indirect response mode, In the direct mode, the subject is asked ques~
tions that require numbers as answers. The answers can be given in
the form of probabilities (or equivalently in the form of odds) or
values. In the indirect response mode, the subject is asked to choose
between two or more uncertain situations. The probabilities character~-
izing the situations are adjusted until he is indifferent, and the point
at which he is indifferent is translated into a probability or value
assignment. The indirect response mode is typically used with a refer-
ence process, where the subject is asked to compare some aspect of an
uncertain quantity to a reference process such as the toss of a fair

coin or the spin of a wheel of fortune.

Which encoding method is most appropriate depends on the
type of uncertainty being assessed. For instance, if there are only a
few possible outcomes for an uncertain quantity, a method that requires
the subject to divide the range of possible values for a state variable
into a number of intervals may not be appropriate. The choice of encoding
method should be based on the characteristics of the uncertain quantity,
its importance to the modeling effort, and the personal preferences of

the person supplying the information.

The encoding process consists of five distinet phases: the ?

motivational phase, structuring phase, conditioning phase, encoding phase 5
and the verification phase. 1In the motivational phase, the analyst must
explore the subject’s motivational biases and attempt to eliminate or

63




B Laiichal ittt

T T AN

R e Sy P VR F A e el T TR R 1 S e S = = P

compensate for them. In the structuring or definition phase, the subject
and analyst must reach an agreement on the exact definition of the uncer-
tain quantity being considered. The conditioning phase is directed toward
finding out how the subject goes abcut making his probability essignments
and heading off any biases that might surface during the encoding process.
Once the uncertainty has been well defined and the subject’s cognitive
and motivational biases have been explored, the process enters the encod-
ing phase and utilizes one of the encoding methods discussed above, In
the verification phase the encoded information is subjected to a number

of consistency checks to see 1f it truly represents the subject’s beliefs.

Encoding the probability of rare events~=events that have
a very small probability of occurrence-~-is difficult for two reasouns.
First the subject is asked to assess the probability of an event with
which he has, by definition, little experience. Secondly, he may have
to distinguish among very small probabilities (for example, a probability
of one in one thousand as compared to a probability of one in ten thou-

sand) .

Procedures have been proposed for overcoming these diffi-
culties. One such procedure is to relate the rarr event to other uncertain
events with which to subject is more familiar; another is to describe the
event in terms of its component parts or as the result of a sequence of
other events, The purpose of these procedures is threefold: to gather
all of the information relevant to the event that is within the subject’s
command, to see if the event can be redefined in terms that no longer in-
volve small probabilities, and to produce lists of related events that
can be used as reference points in getting the subject to make relative

statements about their uncertainty.

The subject 1is asked to make relative judgments about the
occurrence of a number of different events before dealing with very small
probability numbers. Subjects can often say whether one rare event is
more or less likely than another rare event, even though they would find
it difficult to assign a numerical probability to either event. By doing
so the subject can bound the probability sssociated with a rare event,
and then narrow the bounds as required for the modeling effort.
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The assessment of state variables becomes more complicated

when the judgment of a group of people is quantified. There are many
decision problems for which more than one expert is available to supply
subjective estimates of uncertain quantities, and there can be consider-
able differences of opinion among the various experts. Group encoding
procedures are used to aggregate the estimates of several experts into

one probability distribution that can be used in a decision analysis.

Group encoding is currently carried out with several sub=-
jects, whose judgments may have been encoded individually prior to the
group encoding session, and an analyst who monitors the flow of informa-
tion among the subjects to see that all the relevant opinions are discusscd
and incorporated into group consensus, Another individual may have the
responsibility of reviewing the group consensus and dissenting opinions,
and deciding on the final probability distribution that should be used
in the analysis, This individual is typically the head of the organi-

zation L*1t has employed the services of the group of experts.

Much of the research associated with group probability en-
coding has been concerned with the way in which information should be
exchanged among the individuals supplying subjective estimates. At one
extreme, it has been suggested that participants in the group encoding
process remain anonymous, and that they send each other their subjective
estimates but not the logic behind the estimates. This procedure has been
called the Delphi technique; it is designed to reduce the influence of
group members with dominating personalities and to encourage each member
of the group to reach his or her own opinion. Alternative procedures
allow the participants to meet face-to-face and exchange information
freely. These procedures are often more successful in producing a group
consensus than is the Delphi technique, in part because each member of

the group can lecarn from the additional information supplied by others.

b. Assessing Dependenci s

After the structuring process has identified the linkages
among system variasbles, the manner in which the variables depend on each

other is usually assessed in two steps. First the dependencies are assumed
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to have particular forms, and then they are assessed quantitatively. For

instance, it might be asgsumed that the cost of maintaining a piece of equip~

ment grows exponentially, so the cost in any year can be determined by mul-

tiplying the previous year’s cost by a certain growth factor. With this
assumption, the quantitative assessment reduces to one of specifying the

growtn factor.

In determining the nature of a decision mod2l, the assump-

tions made about the form of interdependencies among variables are at least

as important as a quantitative assessment of the dependencies themselves,

Yet most of the existing procedures for assessing dependencies focus on the
quantitative assessment of relationships whose form has aiready been deter~
mined. For example, regression analysis (linear least-squares curve fitting)
provides a means for deriving the parameters of a transformation from exis-
ting data 1if one is willing to assume that the transformation has a partic-

ular linear form. While assumptions about the form of variable dependencies

may be necessary to simplify the task of assessing them, caution must be
exercised to avoid assumptions that do not approximate reality. No amount
of quantitative assessment will produce an acceptable approximation of a
relationship among elements of a decision problem if the relationship on

which the assessment is based has an inappropriate form.

One of the basic assumptions that must be made about the
form of relationships among system variables if whether they should be
represented deterministically or probabilistically. By assuming that a
dependency is probabilistic, one can include the effects of several
possible deterministic transformationes in the same mode. This makes it
somewhat easier to accept the asuumptions inherent in the form of the
transformation. However, the use of probabilistic relationships can
greatly increase the difficulty associated with quantitatively specifying
the dependency. To overcome this difficulty it may be necessary to
couple the use of probabilistic relationships with assumpcions of
independence, especially in models where state variables are aleatory
and the transformations among them are described by conditional probabi-
lity distributions.
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For example, consider a model in which there are four 4
aleatory state variables, each of which has three possible values. If 2
the variables are all independent, the decision maker’s state of informa- 4
tion about them can he specified with 12 probabilities. On the other hand, §
{f they are totally dependent, it will be necessary to assess at least 3

81 probabilities, most of them defining probabilistic dependencies.

bt e Lk

Sometimes it is easler to assess the uncertainties asso-

ciated with dependent aleatory state variables as joint probabilities,
while in other situations it 18 easier to assess the same information in %
terms of conditional probabilities, A joint probability distribution 5
specifies the likellhood of every possible comblnation of values for S
the state variables, Conditional probability distributions specify the 5
probability that some subset of state variables have certain values
given the values of the remalning variables. Either set of probability
distributfons can be derived from the other; the decision maker can ;

supply whichever is easler to assess,

In the example of four aleatory state variables, each of
which has three possible values, there are 81 joint probabi{lities, one
for every possible combination of values. However, 117 conditional prob=-
abilities, plus three additional probabilities specifying the state of
information about one state variable, are required to specify the same
information {f the variables are completely dependent. 1In this case the
number of conditlonal probabilities needed to specify the dependencies
exceeds the number of joint probabflities, which means the joint prob-
abilities are probably easier to assess. However, if it ls assumed that
some of the state v.riables are independent, the number of probability
assessments may be minimized by eliciting conditional, rather than joint,
probabilities. For Instance, {f each state variable in the previous ex-
ample depends on only one other varfable, only 27 conditional probabil-
ities are required to specify the dependencies. In this case it is prob=-
ably preferable to assess conditional probabilitles.

However, the choice of assessing either conditional or
joint probability distributions to represent probabilistic dependencies
can depend on factors other than the required numbers of probability
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assessments. Conditional probabilities are often difficult to assess

when the state variables represent events that can occur in any order.
When a unique sequence of events does not exist, it may not be obvious
how the dependencies in a model should be defined or assessed. Assessing
conditional probabilities in different orders can lead to conflicting
gsets of probabilities. Another problem with assessing dependencies in
terms of conditional probabilites is that the subject may anchor on a
probability given one state of information, and then shift his probability
estimates by an insufficient amount when the state of information is
changed. To overcome these difficulties it may be necessary to assess
the dependencies among aleatory state variables in several different
orders to expose and correct inconsistencies, or assess the dependencies

in terms of joint probability distributons,

c. Assessing Preferences

The process of assessing preferences follows from the
structure that has been defined for the preference model. 1f distinct
value, risk, and time preference models have been specified in the model
structure, then each type of preference is assessed separately. Other-
wise, all types of preferences are assessed together. Several assessment
techniques have been developed for use with various sorts of preference
models. Each technique requires the decision maker to make represent-
ative choices, and then this information is used to infer his preferences
over a certain range of outcomes., The techniques differ in the way that
the representative choices are presented to the decision maker, and the
manner in which his responses are processed to specify the preference

model.

One way to encode preferences is to ask a decision maker
to choose between two possible combinations or outcomes, or, if his risk
attitude is being encoded at the same time, between probability distri-
butions over the outcomes. This is called the "paired comparison' method.
If the decision maker indicates a preference, the outcomes (or probability
distributions over outcomes) are modified to find a set of outcomes (or
distributions) between which b g indifferent, If the outcomes are
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deterministic, the decision maker’s preferences can be represented by
indifference curves in the space spanned by the outcome variables, 1If
the decision maker is offered choices among probability diutributions
over the outcomes, it is generally not possible to draw indifference
curves, and a large number of Inquires may be necessary to establish his
preferences. Thus paired comparisons are usually made between combina-
tlons of outcomes that are known with certainty, which {s equivalent to
splitting the preference model into a separate value model and risk pref=-

erence model.,

The paired comparison method can be generalized slightly
by asking the decision maker to rank several possible combinations of
outcomes in terms of his preferences. This amounts to making a number
of paired comparisons at the same time. In any case, when this method
is applied to deterministic outcomes, it produces an ordinal value
measure since the decision maker {s never asked to say how much he likes
one combination of outcomes more than another. 1If the paired comparison
method {8 applied to probabllistic outcomes, it produces a cardinal util-
ity measure with the properties discussed in Chapter 1II,

Another way to encode preferences {s to ask a decision
maker to speclify tradeoffs among various outcome variables. This mcans
that he must specify how much he would be willing to change one outcome
variable in an undesirable direction in order to make a desirable change
in another outcome variable. By specifying such a tradeoff, a decislon
maker defines two sets of outcomes between which he is indifferent:
the original set of outcomes and a new set in which two of the outcomes
have been changed. This method of assessing preferences is almost always
used with deterministic combinations of outcomes, which means that a sepa-
rate risk preference model is required. It also means that the tradeoff
method can usually be used to develop indifference curves. Since the de=-
cision maker is asked to specify only deterministic combinations of out=
comes among which he I8 indifferent and not how much more one combination
is worth than another, the tradeoff method produces an ordinal value mea-

sure.
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The value measures produced when the paired comparison and :

tradeoff methods are applied to deterministic combinations of outcomes -
are often interpreted as cardinal quantities, even though both methods
produce ordinal quantities. As explained below, this interpretation can
be justified {f the value measure is defined in terms of an appropriate

outcome.

At the completion of the assessment process the decision
maker’s preferences are defined as a ranking of all possible combinations
of outcomes, This ranking is usually extrapolated from his choices among

representative outcome combinations. The preference ranking can be rep-
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resented graphically as indifferences surfaces or curves, as shown in

b it

Figure 4.2(a). This figure shows some of the Indifference surfaces that

e

might be assessed for three outcome variables x , y , and 2z, The
assessed value model maps the combinations of outcomes represented by the

three Indifference surfaces-- Sl . S2 , and S ~=into three levels of p

3
If the combinations of outcomes

the value measure-- v1 , v2 , and v3.

corresponding to the S3 indifferences surface are preferred to those {

corresponding to the S2 indifference surface then Va exceeds Voo

The amount by which v_  exceeds v, 1is Irrelevant for defining prefer-

3 2
ences, In fact, any positive, monotonic transformation could be applied

to the value measure and it would still describz the same preferences and

indifference surfaces. The transformation would change the values of

vl »Vy and v3 but not their ranking; hence, a preferred combina~

tion of outcomes would still have a higher value measure.

There are many possible ways to define the value measure,
gince it is arbitrary within a positive, monotonic transformation. One
way the value measure could be defined 's in terms of the outcomes. For
instance, if for any combination of outcomes, there cxists another combin=-
ation whose outcomes are all zero except for one particular outcome such
that the decision maker is indifferent between the two combinations, then
the value measure can be defined as that non~zero outcome. This is shown
in Figure 4.2(a). The three indifference surfaces—=- S1 ' S2 , and 83 -
each contain one combination of ovtcomes where x and y are zero. These

outcome sets correspond to the points where the indifference surfaces
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(s) INDIFFERENCE SURFACES FOR THREE OUTCOME VARIABLES
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' (b)

A
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intersect the
zl . zz , and 23 .

INDIFFERENCE CURVES WHEN 2 EQUALS ZERO

FIGURE 42 INDIFFERENCE CURVES ON SURFACES

z axis, and the values of z for these outcome sets are

These values of 2z can be used as the vali.e measure

e¢ince preferred combinations of outcomes have larger values of = .
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If the value measure is defined hy a cardinal outcome
variable, then the value measure can be treated as a cardinal quantity.
For instance, if =z in Figure 4.2(a) is incremental wealth (measured
in dollars, for instance) and 24 is three times z then it is pos-
ble to interpret a set of outcomes represented by a point in the indif-
ference surface s, as being worth three times as much as a set of out~

comes repregented by a point in s In particular, the value measure

for sets of outcomes involving onI; x and y can be placed on a cardinal
scale by associating the appropriate value of 2z (wealth in this case)
with each x-y pair. Preferences among outcomes involving only x and

y can be represented as indifference curves, as shown in Figure 4.2(b).
These curves are equivalent to those shown in Figure 4.1(a) where the
indlfference surfaces=- S, , S, and §

1 2
these I[ndifference curves are 2z

3 and the value measures for

Z, , and 2

1 2 3

Often indifference curves such as those shown In Flgure

4.2(b) are arsessed together with an equivalent level of some other outcome,
but wlthout an assessment of the complete Indifference surfaces shown In
Figure 4.2(a). Typlcally the decislon maker {s asked, "How much of one

part icular outcome would you accept In place of a given set of outcomes

(or In place of any other outcome set that you find equally desirable)?"

In this way, a situation with non-monetary outcomes might be evaluated In
monetary terms, However (v I8 not necessary for the value measure to be
defined in terms of money In order for it to be considered a cardinal quan-
tity. Any well=defined, cardinal, quantitative outcome=-=-such as damage

to the enemy or lives lost--will suffice.

1f the value measure is not defined in terms of a cardinal
outcome variable, it cannot be treated as a cardinal quantity. For
example it I8 not appropriate to ask a deci{sion maker to state how much
more he likes one combination of outcomes than another, or to specify
the relative "value" or "ut{lity" of two sets of outcomes. 1In this
case the decision maker 18 asked to specify a cardinal quantiiy on an

ordinal scale. .he responsc to such a request is not well defined since
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it cannot be known which scale the decision maker used to calibrate his

preferences.

A third way of assessing preferences is the multi-attribute
approach discussed in Chapter III., This method produces an individual
value measure for each of the outcomes (attributes), The individual
value measures must be assessed as cardinal quantities so that they can
be combined to form a single, composite value measure. This means that
each of the value measures must be defined in terms of a cardinal outcome
variable. It 18 not necessary that all of the Individual value measures
be defined in terms of the same outcome variable, but the process of com-
bining the individual value measures requires fewer assumptions 1f this
in the case. In any case, asking a decislon maker to define his prefer-
ences with respect teo each of the outcomes (attributes) in terms of "value"
or "utility" produces a set of ovrdinal quantities that cannot be alge-

braically combined to produce a composite value measure.

It is often the case that several individuals with dif-
ferent preferences are Involved in a decision. A complete analysis of
such a situation requires cunsideration of the alternatives open to each
individual to influence the primary decision. Game theory and social
choice theory are appropriate for such an analysis. However, when there
is an identifiable decision maker, it is clear that his preferences will
vultimately be used to make the decision. The desires and possible actions
of others may figure into his preferences, but a decision make:r will even-
tually have to choose an alternative that he thinks is best., When It is
not clear who is the decision maker, it may still be possible to analyze
a decision situation and show that the range of preferences relevant to
the deciston all leud to the same p.eferred alternative. At a minimum,
an analysis of a situation i{n which there is no single decision maker can
focus debate on those preferences issues that lead to the selection of

different alternatives,

1f it is necessary to assess a separate risk preference
model, the decision maker is asked to make several representative choices
among probability distributions over the value measure. Typically the
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distributions are simple, and the possible levels of the value measure

are chosen so that the utility associated with all but one of them is
known., The distributions are altered uitll che decision maker is indif-
ferent between them, and the un!nown utility is determined by equating
the expected utilities associated with the two distributions. Often it
is assumed that the decision maker”s risk aversion is constant over a
gi~en range of value measures. In this case the decislon maker’s choices
among referenrr lottiries are used to determinae and verify the conatant
level of risk aversion. The most common assumption made with respecc to
risk preference i{s that the decision maker is risk neutral. This means

that hn is assumed to choose the value distributions with the highest
expected value.

Methcds currently used for assessing time preference are
clumsy at best. Typically it is assumed that the decision maker’s time
preference can be renresented by a constant discount factor, which is
then treated as a system variable. Mure complicated and realistic time
preferences are usually assessed by considering the possible occurrences
of an event in differe~* time periods to be different outcomes, and then
using the methods dliscussed above to a:isess preferences among uutcomes.
This amounts to including time preference in the value model and not con-
structing a separate time preference model. However, recent results
[1] indicate that practical methods for assessing a separate time pref-
erence model are possible, if certain assumptlons are made about the form

of a decision maker’s aversion to variations in the value measure over

time.

B. Analysis

As shown in Figure 4.1, there are thrre steps in analyzing a deci-
sion model: the solution of the model, sensitivity analysis, and deter=
mination of the value of information. The solution of the model to find
the recommended alternative and the corresponding distribution of possible
outcomes is primarily analytical; it forms the basis for the other two.
Sensitivity analysis is used to determine the relative importance of model
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components and thus gulde efforts to revise and improve the wmodel. Deter-

mining the value of information provides the basis for decisions to gather

new information, which can be used to update or restructure the model.

l. Model Solution and Decision Optimization

There are several ways to solve any decison model. Which method
is most efficient depends nn the nature of the model and the accuracy re-
quired in the solutfon. Even if a model has been constructed so that it
can be solved using a particular technique, there may be other solution
techniques that are equally if not more efficient. For example, a deci-

sion tree can be solved using direct processing of the tree structure,

proximal analysis, Monte Carlo techniques, dynamic programming, and linear

programming. Some of these solut fon techniques are relatively ineffji-
cient, but they can provide insights not produced by other techniques.
For instance, determining the second-best decision strategy in a compli-

cated declision tree is difficult using procedures that process decision

trees di-ectly. However, a linear programming solution of thc same prob-
lem easily produces the desired result., Switching from one solution ;

techniqu:: to another may require a reformulation of the decision model, 1

but the 2ffort {nvolved is often justified by the savings in computa-

tional effort raquired to solve the model. i

The direct solution of decision trees, one of the basic types
of models used in decision analysis, is discussed in any elementary text
on decision analysis [13]. This solution techuique, sometimes called
"rolling back" a a. ~ sion tree, is usually adequate for simple decision
problems. Hnwever, a characterist'c of decicion trees is that they tend
to grow very rapidly as the size of the model is expanded. At present,
it is not uncommon for analysts to utllize decision trees containing
thousands, or even milliona, of nodes. Even with the use of automated
dreision alds, straightforward proceduren for analyzing decision trees
can become time-consuming and expensive. A method of overcoming this

problem, by eliminating redundant portions of a decision tree, is de=
scribed in Chapter V.




SN TR T e GRS

Another way to analyze large probabilistic models is to use
approximate methods for solving them. Perhaps the most common of these
is the Monte Carlo method, which involves repeatedly sampling the proba-
bility distributions for the aleatory state variables and then solving
the remainder of the decision model deterministically, If this process
is carried out many times for each of the alternatives available, the
deterministic model solutions will collectively approximate the distri-
bution of outcomes assocfated with each alternative. The Monte Carlo
method has the advantage that it does not require probabilistic procesa-
ing of the model, and the disadvantage that it may require a very large
number of deterministic model solutions before an adequate approximation
of the distribution of outcomes can be obtained. Futhermore, if there
are a large number of alternatives (which is often the case when there
are several decision variables), a prohibitively large number of determi-
nistic model solutions may be required to find the distribution of out=-
comes assoclated with each alternative,

Approximate methods have also been developed for analytically
processing probabllistic models [6]. These methods, called proximal
analysis, make it possible to determine approximate values for the mean
and higher moments of an uncertain outcome in terms of the moments of
the distributions for the aleatory state variables, without completely
solving the model for the probability distribution over the outcomes.

The accuracy of the approximations depends on the nature of the transfor-
mations from the aleatory state variables to the outcome variables. The
advantage of proximal analysis is that it approximates moments of the
distribution of outcomes without repeated deterministic solutions or a

complete probabilistic solution of the decision model.

A complete description of all of the methods available for an=
alyzing decision models, including probabilistic models, is beyond the
scope of this report. However the various analytical methods are well
documented, and are probably the most clearly defined elements of the de-
cision analysis process [4,12,13)., The importance of these methods for
the overall process of modeling and analyzing decisions is that they de-
termine the cost, and even tha feasibility, of using the model developed
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by the other steps to gain insight into a decision situation. The avail-
ability of an efficient sclution technique can justify the development of

a complex decision model, as long as the model i{s an adequate representa-
tion of the decision enviruvnment and not just one that is compatible with
the solution technique. Thus solution techniques are a guide to the mod-
eling process since they determine whether the benefits to be derived

from the model will exceed the cost of analyzing it.

2. Sensitivity Analysis

One of the basic tools for analyzing decision models is sensi~-
tivity analysis. By determining the sensitivity of one model component
to changes in another, one can gain insight into the relative jimportance
of various components and the effect that modeling assumptions have on

the output of the model.

There are a number of ways to measure the sensitivity of one
parameter to another. If both parameters are known with certainty, deter=-
ministic sensitivity analysis can be used. The most common way to carry
out this form of analysis is to vary one of the rarameters over a spec-
ified range, and plot the corresponding values of the second parameter
as a function of the first parameter. The resulting graph, showing the
pairs of parameter values that fit the model, describes the global sensi-
tivity of the parameters to each other. The analysis is global in the
sense that the relationship between the two parameters is described over
a given range., Alternatively, the local sensitivity of one parameter to
another at a given operating point can be computcd by determining the rate

at which small changes in one parameter cause the other parameter to change.

Local sensitivities are measured in terms of partial derivatives, All
sensitivity analyses can be classified as either global or local.

Another way to classify sensitivity analyses is by whether thay
produce open-loop or closed-loop sensitivities. A closed=loop sensitivity
is one in which the decisions embedded in the model are reoptimized whene
ever one of the parameters is changed. An open=loop sensitivity, which
1s usually easier to compute than a closed-loop sensitivity, is one in
which the decisions in the model are f£ixed throughout tha analysis even
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though changing one of the parameter values over its range might change
the optimum decision.

For uncertain model parameters, a probabilistic sensitivity
analysis is possible. Typicallv this analysis is carried out by holding

an aleatory state variable co.=t .. . -t each of its possible levels and
observing the effect oo the o' ... - [stribution. However, there are

gseveral other ways to conduct a tistic sensitivity analysis. 1In
general, a probabilistic sensiti*  ..volves modifying the probability

distribution for one state variall < ana observing of the effect on the
distribution for other state variables. The procedures for probabilistic
sensitivity analysis are not as well defined as those for deterministic
sensitivity analysis because there is a variety of ways in which one can
modify a probability distribution. For example, i{n one analysis 1t might
be deeirable to change the variance of one distribution while holding its
mean constant} in another analysis it might be preferable to vary alge-
bralc coefficients in the expression for the probability distribution.

As with deterministic sensitivity analyses, probabilistic sensitivity
analyses can be either global or local, and either vpen-loop or closed-

loop.

Joint sensitivity, the effect of varying several model compo-
nents simultaneously, is more difficult to calculate and visualize. The
problem with calculating joint sensitivities is that ther: can be very
many ways to vary several variables simultaneously. Furthermore, visual-
izing global joint sensitivities requires plotting the dependent variable
in several dimensions. One way to avold these problems is to determine
local joint sensitivities in terms of gradients. Gradients can be repre-
sented as n-dimensional vectors and are much easier to comprehend than
n=-dimensional functions. Joint sensitivities to probabilistic quantities
are even harder to visualize than joint deterministic sensicivities, and
are therefore rarely used.

One of the primary reasons for carrying out & sensitivity anal-
ysis is to manage the growth of a decision model. Decision models are
commonly designed from the "top down." A few aggregate system variables
are defined first, and then they are defined in terms of increasingly
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detailed aad specific variables. For example the outcome of a public
sector decision might be a measure of social profit. However, directly
estimating this measure for each alternative is equivalent to selecting
an alternative by intuition, Tu model the situation, the measure of so-
cial profit can be divided into benefits and costs. Both of these vari-
ables can be further expanded by defining them in terms of more specific
quantities until a level is reached where experts are available to esti=-
mate the inputs to the model. The process of expanding the model is

continued until it is no longer economic to do so.

Figure 4.3 shows how top-down modeling and sensitivity analysis
affect the size of a model. At the start of the modeling process, intuition
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BIGURE 4.3 INITIAL MODEL PROGRESSION IN DECISBION ANALYSIS
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and direct assessment are used to predict the outcomes and some inferior

alternatives can be discarded without formal analysis. Aa the mndeling

process progresses, the size and complexity of the model increase. Then

sensitivity analysis is used to eliminate relatively unimportant variables,

and the size of the model contracts.

The process of modeling and analyzing a decision rarely ends
after the first application of sensitivity analysis. Instead, the
information provided by a sensitivity analysis is used to identify
areas where additional modeling is required. This leads to another
expansion of the model as shown in Figure 4.4. The result is that the
size of the model alternately expands and contracts, with the average
model size increasing gradually as important variables are defined,

tested with sensitivity analysis and retained.

/

/ WITHOUT
SENSITIVITY
/ ANALYSIS

" WITH
SENSITIVITY
ANALYSIS

MODEL SIZE AND COMPLEXITY

Model | o Model | MODELING PROGRESS (TIME)
Expansion Contraation

FIGURE 44 MODEL PROGRESSION IN DECISION ANALYSIS
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i Each time the model expands and contracts the decimsion analysis

) process has proceded through the steps of structuring, assessment, model
solut fon, and sensitivity analysis, as shown in Figure 4.1. Eliminating
unnecessary model components is one of the important characteristics of
decision analysis. If a decision model were developed without discarding
relatively unimportant variables, the size of the model would grow rapidly
as shown by the dashed line in Figure 4.4.

3. Determining the Value of Information

Sensitivity analysis is not the only tool for evaluating the
relative worth of various model components. Determining the value of
E infoimation can also supply a measure of the importance of state variables,

in addition to guiding efforts to gather new information.

One of the advantages of a probabilistic model is that it can

be used to calculate the value of information. Information changes the

T LT

uncertainty inherent in a decision, and this change can be incorporated

; ; ' in a probabilietic model since uncertainty is represented explicitly.

' In situations where the decision maker’s attitude toward a risky situa-
tion is independent of his wealth, the value of information can be deter-
mined by solving a decision model twice--once with the original state of
information and once with new information--measuring the difference in
the "certain equivalent". The certain equivalent is the deterministic
level of the value measure that the decision maker views as equivalent

to a probability distribution over the value measure. However, in sit-
uations where a decision maker’s attitude toward a risky situation depends
on his assets, the cost of obtaining information must be included in the

e P

: decision model. The value of information is equal to the cost such that
the decision maker is indifferent between purchasing the information or
acting without it.

As shown in Figure 4.1, the possibility of purchasing informa-
tion presents the decision maker with some secondary, information-gathering

decisions in addition to the primary decision. The two types of deci~
sions are often confused, For exanple, decisions to allocate resources
to 'ntelligence activities are information-gathering decisionsj they
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should be analyzed in the context of other decisfons that can be influ-
enced by the information resulting from the intelligence activities. If
the primary decisions for which the information is required are not
included in the model, it is necessary to assess the value of informa-
tion directly., Unfortunately, humans are notoriously poor at assessing
the value of information. Determining the value of information often

produces the most counter-intuitive results of a decislon analysis.

The value of information is usually determined for information
about aleatory state variables. However, when the dependencies among
state variables are uncertain, it is still possible to calculate the
value of Information about them. 1In practice the same procedures are
used to determine the value of information that would alter the decision
maker’s perceptlon of a problem and thus require significant structural
changes in the corresponding model. 1f the manner in which the informa=~
tion changes the model can be anticipated, an expanded version of the
model that Includes this possibility can be used to calculate the value
of the informatlon., However, information that changes an individual’s
perception of a decision 18 often unanticipated. Unfortunately no amount
of modeling will allow one to evaluate unanticipated events or information.
Decision models, like decisions, can only be based on what the decision

maker knows, or can learn about the situation.

The value of information can be used as a guide to further
modeling., If there is reason to believe that further modeling of a state
variable will produce a better estimate of the variable, then the model-
ing may be justified 1f the value of Information about that variable is
high relative to the cort of the additional modeling. In any case, new
information always leads to an updating of the state of information repre=-
sented in the model.

Calculating the value of information can be difficult in large
models. One way to overcome this problem is to use approximate methods
to determine the value ¢f information; these maethods are discussed in
Appendix B, A more common way to simplify the calculations is to deter=-
mine the value of perfect information about some of the state variables,
end then use the result as an upper bound for the value of realistic,
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imperfect information about those variables. The value of perfect infor-
mation is relatively easy to calculate because it usually does not require

updating any of the probabilities in the model,

Even the value of perfect information becomes difficult to cal-
culata 1f tb:> probability distribution associated with state variables
depends on decisions, or if information about a state variable depends
on decisions. The problem is that the probability that the information
will be of a particular form depends on a decisicn which, in turn, may
depend on the information. This problem can be overcome by breaking up
a state variable with decision-dependent information into several separate
state varlables, one for every alternative upon which the information
depends. However this drastically increases the size of a decision model.
Furthermore, the new decislon-dependent state varlables are not necessar-
ily independent of each other, which necessitates assessing the dependen-
cies among them. The problems associated with decision-~dependent infor-

mation are discussed in Appendix C,

Determining the value of information is also more difflicult
when it is possible to buy several pieces of information-~called
"observables'--gequentially, Learning one observable can affect not
only the primary decision, but also Information-gathering decisions with
respect to the other observables. As shown in Figure 4.1, the new infor-
mation contained in the first observable i1s used to update the model,
and then additional information-gathering decisions must be made before
the primary decision is made. Since knowing the first nbservable can
help with both Information-gathering decisions and primary decisions,
the value of the first observable is greater than it should be if it
could affect only the primary decision. The prices of the observables
affect the decision maker’s willingness to buy additional information,
and therefore the amount that the value of information is increased by
the possibility of buying additional information depends on the pricaes
of all the observables. The manner in which decision problems with
sequential inférmntion can be solved using computers is discussad in
Appendix D,
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If a decision problem contains several different decisions,
it i83 necessary to know which decisions will have been made at the time
information is received in order to calculate the value of the information.
The question of the relative timing of information and decisions is
described in terms of the flexibility of the decisions A flexible deci=-
slon is one that can be delayed until information can be gathered to guide
the decision. The value of a pilece of information depends on which deci-
sions are sufficiently flexikle to allow their postponement until the in-
formation arrives, Thus, it may be necessary to refer to the value of
information about a state variable in relation to the flexibility of a
given decision variable. The subject of flexibility is discussed in
Appendix E.
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V  DECISION MODELING CONCEPTS

This section deals with some of the concaptual tools that are used
to construct and analyze decision models. These concepts are the prac-
tical application of the modeling and analysis process described in
Chapter IV and their use defines the characteristics of a decision model
as described in Chapter ITI, It is anticipated that decision modelinrg
concepts such as those described in this section, will form the basis ftor

a system of automated decision aids.

The list of modeling concepts described in this section is not exhaus-
tive. However the discussion atarts with bacic ideas that are common to
almost any decision model, and proceeds to those applied modeling tools
that have been useful for a broad range of decision problems, The more
applied concepts described here can form the basis for automated declision
alds, and as new approaches to modeling decislons are developed, a suit=-

ably designed system of decision alds can be expanded to incorporate them.

Decision models are often conceptualized and constructed in both
algebrale and graphical terms. Sometimes g-aphical represen.ations of a
model are more useful than algebraic forms, and vice versa. However,
there 1s no single conceptual approach that is "best" for modeling a par-
ticular decision. One individual might prefer to visualize a complex de-
cision situation in terms of computational graphs, tree structures, block
diagrams, or multi-dimensional graphs, whila another person might deal
with the same problem using systems of equations, alpha-numeric lists of
data, or algebraic computer programe (FORTRAN, ALGOL, LISP, APL, etc.)

In fact there is value in using several different conceptual approaches=--
both algebraic and graphicale=for the same problem. Different approaches
tend to illuminate different aspects of a decision problem. It is often
helpful to switeh back and forth between algebraic and graphical repre-
sentations of the same problem, using whichaver concepts facilitate each
step in the process of modeling and analysing decisions.
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For example, decision trees are often used to represent complex de-

cision situations, However, decision trees easily can become so large
that they cannot be visualized in their entirety. As a result, the struc-
ture of a tree may be summarized in a more compact graphical notation, or
described by a series of algebraic statements, Since these compact repre-
sentations are often incomplete, it may be necessary to use several of
them to completely specify a large decision tree. Each representation

supplies a different perspective on the nature of the model.

A, Basic Concepts: Entities and Operators

All models have In common certain fundamental building blocks,

called entities and operatcrs. Entities describe the state of the envir=-
onment ot one’s percoptlon of the environment, and operators describe the
way in which entities are moditfied and related to cach other. FEntities
can be numbers, arrays, functions of time, strings of alpha=numeric data,
algebrale variables, logical variahles, complex variables, etc. Opaerators
transform one set of entities into another, and describe dependencies or
relationships, The definition of entities and operators can be based on
algebra, set theory, probability theory, Boolean algebra, linear algebra,

calculus, or any other branch of mathematics or logic.,

For example, entity El could be the demand for a particular com-

modity at some point in time. Entity E_, could be the equilibrium price

of the commodity in a competitive market? Operator O could transform
the demand Iinto an equilibrium market price. An economist might view
this transformation in terms of u demand curve like the one shown in
Figure 5.1(a)., However, the same process can be viewed as an operator
(the demand curve) transforming entity E.  (demand) into entity E

(price) a= shown in Figure 3.1(b).

1 2*

1. The Prope [ Operator

Operators are defined as functions that produce a value for
aach output for every possible combination of inputs. Furthermore,
operators have a direction; they transform inputs Into outputs, but not
vice versa. Howaever, it mey bYe possible to reverse the transformation

8é -




T T T S YT T Y
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(a) DEMAND CURVE

(b} GENERAL NOTATION

FIGURE 8.1 ILLUSTRATION OF OPERATORS AND ENTITIES USING A DEMAND CURVE

defined by an operator, and thus form a new operﬁtor with different
inputs and outputs. One implication of the directiongl nature of oper=
ators is that an equation defines several oparators. To define a unique
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operator, an equation must be accompanied by a specification of its inputs
and outputs. For example, the equation X = Y + Z describes three oper-
ators, each of which maps two of the entitiese-« X , Y , and Z =-into a
third,

The directional nature of an operator and the requirement

that it produce an output make it possible to avoid a number of computa=-
tional difficulties, such as nonexistent or multiple outputs. However,
these requirements may make it difficult to reverse an operator’s inputs
and outputs. The mapping defined by an operator need not be "one-to~one"
or "onto." If the operator determines entity Y from entity X , "one-
to~one" means that there is a unique value of X for every value of Y.
"Onto" means that there is some value of X corresponding to every possi-

ble value of Y.

If the mapping from X to Y 1is not one~to-one, certain
values of Y will have several corresponding values of X . If the
mapping from X to Y 18 not onto, certain values of Y will have no
corresponding values of X. In either case, it 1is difficult to inter-
pret the relationship between X and Y as one in which X {is dete,=
mined from Y . 1tn other words, the relationship between X and Y

contains an implicit direction: X 1is the input and Y 1is the output.

It is possible to reverse the inputs and outputs of an nperator
that is not one-to-one and onto by defining a new operator with certain

special conventions. For example, the equation Y = X, 1is ambiguous

if it is viewed as a transformation from X to Y . ﬁowever, if this
equation is used to define ar operator with Y as the input and X as
the output, it can produce more than one output or no output at all, de=~
pending on the value of Y . In order to overcome this difficulty, one
could define the operacor with the convention that X 1is always the pos:-
itive squarc root of Y {f Y 1is greater than or equal to zero, and X
is zero 1f Y 18 less than zero. Making such conventions an explicit

part of an operator’s definiton eliminates ambiguities such as the one

in this example.
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2, Ambiguous Comb nations of Entities and Uperators

Although the definition of operators precludes ambiguous or

impossible transformations among entities by s single operator, combina-

tions of operators can produce insoluble models. For example, suppose

operator O determines the value of algebraic entity Y by adding 1

1
to the value of entity X , and operator O, determines the value of

X by adding 1 to the value of Y. A modelzcontaining both of these
operators would never reach a solution since there are no values of X
and Y compatible with both operators. There are other ways that two
or more operators can be lInconsistent. For instance, a model might
contafin two operators producing different values of the same output
entity. Obviously, a model designer, or an automated modeling aid,
must detect aund correct inconsistencies among operators if a usable

decision model i{s to be constructed.

3. Connection Rules

The definitions of ertities and operators, and the manner in
which they are connected to each other, can be specified seporately.
The topological connections among operators and entities are specified
by "connectlon rules." These rules determine exactly which entities

are the inputs and outputs of each operator.

In small models it is typical for specification of the links
between operators and entities to be included in the definitions of
operators. For example, the demand curve for a particular commodity
can be viewed as an operator transforming one specific entity (demand)
into another (price). 1In this case the connection rule linking price

and demand via the demand curve is part of the operator definition,

While separate specification of the connections between

entities and operators may be cumbersome for simple problems, it can be

a nowarful technique for generating large models. For a typical large
model with thousands of elements, a rclatively small number of general
operators and entities can be defined and then operator rules can be

used to link them together. A connection rule might specify that one
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type of operator is used many times in a model. For example, the
operatvor representing the demand curve mentioned above might be defined
in general terms with input entities that specify the exact shape of
the curve., Then a connection rule could be used to specify several

demand curves for various quantities.

The distinction between connection rules and operators is
similar to the distinction between the definition of a variable and its
gpecific value. Connection rules show exactly where an operator is used
in a model, and the definition of the operator shows how its outputs are

derived from 1its inputs.

When operators are defined in general terms so that they can
be combined with connection rules to specify a large model, 1t is
typical for the operator definitions to include indices. Indices are
special inputs to the operator that help define its function. For
example, an operator representing demand curves might include an index

specifying the shape of the curve and the commodity under consideration.

Several indices can be used in a single operator definition. For example,

one index might specify that the demand curve is for coal and another
might specily tint ¢ represents demand in 1980, Changing the indices
might let the same operator specify the demand fer crude oil in 1975,

Several operators and their respective inputs and outputs can
be combined to form a compound operator. For example, a simple model
of a coal-burning power plant might consist of a single operator that
transforms the rate of fuel consumption and the energy content of the
fuel into the power produced by the plant. The operator that carries
out this transformation is shown in Figure 5.2(a). However, in a more
detailed model of the power plant’s performance, this operator may be
decompoged into several others. Figure 5.2(b) shows an expanded model
in which several operators and entities are used to describe the trans-

formation defined by the original operator.

4, Graphs and Trees

When operators and entities are linked together, either
individually or through the use of cranection rules, the result is a
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computational graph that spec ‘“ies the structure of a model. Graphs

can be used to specify any of the models used in decision analysis:
decision trees, Markov processes, financial models, material flows over
time, fault trees, etc. In fact, given the very basic nature of opera-
tors and entities, it is Jdifficult to conceive of a model that cannot be
put into the form of a graph. This is not te say that graphs are the
most efficient way to model every decision problem, but rather that they
are sufficiently important that they should be incorporated into any

general modeling language.

Graphs can be classified according to the degree to which they
are interconnected. One of the simplest forms of graphs is a tree. All
the linkages of a tree are directed efcher from or to a unique starting

point or origin., There must be only one path that connects any pair of
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nodes, and if one: of those nodes is the origin, all of the operators along
that path must be oriented in the same direction. Figure 5.3(a) shows an

example of the tree,

A slightly more general version of a computational graph is a
coalesced tree., A coalesced tree 1s one in which the branches are allowed
to coalesce or connect together. In a coalesced trec there can be mul-
tiple paths between each pair of nodes, but if one of the nodes is rhe
origin, then all of the operators along all of the paths must be oriented
in the same direction--either toward the origin or away from the origin.

Figure 5.3(b) shows an example of a coalesced tree,

Trees and coalesced trees have the advantage of not containing
loops. A graph contains a loop if two nodes in the graph are connected
by two or more paths, such that all of the operators along one path lead
from the first node to the second and all of the operators along another
path lead in the other direction. An example of - graph containing a
loop 1s shown In Figure 5.3(c).

The existence of loops makes it much more difficult to process
the computational graph, but Lt also makes it possible to simplify the
structure of the graph. Conventions must be established for dealing with
loops in graphs, but once this is done, it may be possible to represent
very large (in fact, infinite) decision problems In compact form. For
example, a Markov process can be represented as an infinitely large deci-
sior. tree. Although a decison tree may be easier to process than a Markov
diagram, the unbounded nature of the decision tree makes it impossible to
solve completely. On the other hand, Markov processes can be represented

and solved using relatively simple and compact graphs containing loops.

B. Function Graphs

Specific types of entitles and operators can be used as applied mod-
eling tools. One such tool is a "function graph", a graph composed of
entities that are algebraic or logical variables (including arrays and

vectors), and operators exprassed in the form of equations. Typically,

function graphs are used to construct deterministic models, but they may
be extended easily to include probabilistic relationships. The following
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{a) EXAMPLE OF A TREE
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{b) EXAMPLE OF A LATTICE

(e) EXAMPLE OF A GRAPH WITH A LOOP

FIGURE 6.3
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discussion shows how function graphs can serve as a basis for developing
decision models and how they could be implemented as part of a computer-

ized system for decision analysis.

1. Using a Function Graph to Represent a Model for Choosin
g & ing

Between Alternative Missile Systems

Analysis of a choice between competing weapons technology would
likely result in the development of a decision model. The model would
coaslst of important factors influencing the decision and logical and
possibly algebraic dependencies among these factors. If entities are used
to represent the factors represented in the decision model and operators
are used to represent logical and algebraic dependencies, the decision
model may be represented graphically., The proposed technique of graphical
representation has been applied to a hypothetical model for choosing be-
tween new generation missile systems. A portion* of the resulting func-

tion graph Is illustrated in Figure 5.4,

In functlon graphs, entities are represented graphically by
blocks. The name or description of the entity is written within the block.
Entities nearer the top of the graph may be characterized as being uwore
fundamentally important for judging the success or failure of a decislon
strategy. The entity at the top of the graph is the fundamental factor
that determines the value of the decision outcome. For the model repre=-
sented by Figure 5.4, the fundamental factor for judging the decision out-
come 1s net military value, this quantity being defined in terms of a
tradeoff between the military value of the missile and 1ts economic cost.
Entities nearer the bottom of the graph are the more elemental properties
of the system. Those blocks which have no entering arrows .re the must

elemental system entities,.

Triangles represent operators. A line connecting an operator
to an entity means that the entity is an input or output of that operator,
Thus, for example, we see from the branching structure of Figure 5.4 that
initial investment cost for a missile system depends on system installation

*This example will be discussed further in the next section.
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An algorithm for constructing a function graph such as that of
Figure 5.4 is in the next section, where we describe a computerized system

designad to aid a decision maker in model development.

2. An Jllustration of the Use of Function Graphs

in a Computerized Decision Aiding Svstem

What follows is a tentative description of the use of function
graphs iu an iateractive computer graphics system for decision making.
We shall call this overall computerized system CADMUS,* an acronym for
Computerized Aids for Decision Makers: User System. Although the char-
acteristics we ascribe to CADMUS are within the capabilities of present
generation hardware and software technology. Our objective is not to
defline the detalled characterestics of such a system. Instead we will
describe how such a system might usefully employ function graphs as a

language for model building.

To illustrate our perception of how CADMUS might use function
graphs, we shall use the sample problem introduced above: choosing
betwzen alternative '"next generation' strategic missiles. The problem
described is purely hypothetical. It is not based on any actual analysis,
nor is it meant to illustrate how such an analysis should be carried out.
A real analysis of the problem would have to evaluate many factors other

than those considered here.

For the purpose of illustration we assume the following hypoth-
etical situation. Two proposals have been submitted to satisfy military
requirements for a new missile design. The two missiles are the ARES and
the JUGGERNAUT. While each of the proposed missiles satisfies minimum
requirements, they differ somewhat in variocus characteristics. Estimates
indicate that the JUGGERNAUT will be considerably cheaper to produce, will
have a more accurate but perhaps less reliable guidance system, and will

require complicated propellant servicing equipment that is more expensive

*According to Greek mythology, Cadmus was a Phuenician prince reputed
to have killed a dragon. Sowing the teeth of the dragon, Cadmus
produced armed men that fought together until only one remained.
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cost and on primary equipment cost. (This is deduced from the fact that

the entity block "initial investment cost" has inputs from the blocks
"{nstallation cost" and "primary equipment cost",) We also see that the
number of missiles maintained ready for launch affects the cost of main-
taining missile readiness and the potential number of missiles reaching
their targets. (The block "number of missiles maintained ready"” 1 1s out=-
puts to "cost of maintaining missile readiness" aind "number of missiles

reaching targets",

The relationships expressed by the operators and the lines con=
necting them to entities are deterministic dependencies. The arrowheads
formed by the orientation of the triangles on these lines define a direc-
tion for computation., The rule satisfied by the connections hetween oper-
ators and entities 1s that given fixed values for all entities with arrows
leading to an operator (input entities), a unique value is specified for
all entities lying along arrows leading from that operator (output enti-
ties)., Thus, glven Installatlion cost and primary equlpment cost, for
example, the model represented by Figure 5.4 would allow initial invest-

ment cost to be calculated.

Elemental entities (those entities in Figure 5.4 with no enter-
ing -rrows) may be c¢lassified as decision variables or as state variables.
Decision variables are entitles whose values represent decision alterna-
tives and hence are set by the decision maker. In Figure 5.4 the elemental
entities "missile system chosen" and "number of missiles maintained ready
for launch” are decision variables. Decision variables are represented
graphically by rectangular rather than circular blocks. The remaining
elemental entities represent either parameters or state variables--entities

whose values are determined by naturve.

Thus, the function graph, when combined with the computational
rule assignments for each operator, graphically represents the decision
model’s deterministic structure. GCiven specific decision alternatives
for each decision variable and specific values for all state variables,
the function graph allows the analyst to calculate the value of the fun-
damental entity whose value represents the net worth of the decision

outcome.,
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to operate than similar equipment for the ARES., Initial eatimates there-
fore indicate that, while the ARES is more expensive to produce than the
JUGGERNAUT, it is cheaper to maintain at operational readiness.

To simplify the discussion we shall assume for the first level
of analysis that the proposed missiles have been judged to have equal
military value, This will allow us to recommend a decision between the
two missiles based solely on cost, enabling us to avoid the complexities
of developing model components for analyzing the military value of missile
systems. As we shall discuss, however, CADMUS could be applied to the
development of military value models as well as the development of cost

models.

a. Using CADMUS to Build a Model

Let us imagine that CADMUS, our computerized system of de-—
cislon aids, has been built., How might it be used by a decision maker
interested in modeling and aualyzing the missile decision problem? The
decision maker begins by sitting down at a computer terminal with video
screen and throwing a switch on the console indicating his request for
CADMUS. A list of computer aids for decision analysis appears {nstantly
on the screen, and our decision maker indicates his wish for assistance
in deterministic model development by touching an appropriate item in this
list with the light pen attached to his terminal.

Instantly, the video screen is transformed into the control
panel illustrated ia Figure 5.5. The center of the control panel, which
displays messages from the computer system, may also be used as a '"scratch
pad" for drawing, typing, or writing., As the light pen is pulled across
this area, a displayed "ink" track appears to flow from the pen. Items
appearinyg here may be erased by scrubbing over them with the pen. Around
the edges of the screen are various control "pushbuttons." If one of
these {s "pushed" (by touching the pen to it), the system performs the
ind{cated action, The buttons in the lower right hand corner of the
screen form a "calculator" for writing mathematical or logical equations.

The buttons on the left of the screen are for system control,
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The fcllowing question appears at the center of the video

streen:

WHAT QUANTITY OR QUANTITIES WOULD YOU NEED TO KNOW TO EVALUATE
THE OUTCOME OF YOUR DECISION?

é ﬁ After thinking a moment, our decision maker decides that
4 | he would need to know two things to accurately evaluate the missiles.
First, he would need to know the total economic cost incurred in *he
construction and operation of each missile system. Second, since
military decisions cannot be made on the basis of cost alone, he would
have to know the total military value to be derived from each missile
system. He therefore types ECONOMIC COST and then MILITAR: VALUE on
the computer terminal; as he does, the words appear on the video screen.

1 ? Economic costs will be fairly easy to define; military value willi be con-

siderably harder. As stated above, we shall limit ourselves to an anal-
ysis of economic cost. Follrwing the development of an econom:- cost

model we shall describe briefly how a military value model would be con-

structed.

B T o T U —

The decision maker indicates that he wishes to explore
economic costs by touching the words ECONOMIC COST with the light pen. ;
CADMUS recponds by flashing the following question on the screen.

; SUPPOSE YOU HAD A CRYSTAL BALL. YOU MAY ASK IT ANY NUMERI- é
CAL QUESTION EXCEPT "WHAT IS ‘ECONOMIC COST’?" FOR WHAT .
QUANTITY OR QUANTITIES WOULD YOU ASK IN ORDER TO CALCULATE !

"ECONOMIC COST"?

: weapon systems: tresearch and development costs, initial investment costs,
i and operating costs. He types R&D COST, INITIAL INVESTMENT COST, and

' OPERATING COST. Immediately, the video screen represents these entries

* i as entities in a graphical structure as shown in Figure 5.6.

E ' . Our decision maker knows that there 2re three major cost categories for é
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The relationship between the three entities is represented

graphically by an "operator" triangle to which CADMUS has assigned the
number !. To specify an analytic definition for the operator the decision
maker turns to the calculator in the lower right hand corner of the screen.
Thinking "economic cost will be the sum of R&D, investment, and operating

costs," he uses his light pen to write¥

TOTAL

ECONOMIC = R&D + INITIAL INVEST- + OPERATING
COST COSsT MENT COST COST

by alternately touching the appropriate entity blocks in the branching

structure and operator buttons on the calculator. As he proceeds, the
equation defining operator number one appears at the bottom of the video

screen,

The decision maker touches the light pen to the entity block

marked "operating cost'" and CADMUS answers:

SUPPOSE YOU HAD A CRYSTAL BALL. YOU MAY ASK ANY NUMERICAL
QUESTION EXCEPT "WHAT IS ‘OPERATING COST’?" FOR WHAT
QUANTITY OR QUANTITIES WOULD YOU ASK TN ORDER TO CALCULATE
"OPERATING COST"?

"Well," thinks our decision maker, "for the basis of comparison we have
specified that the missile maintain a state of operational readiness for

a four-year period." He decides to express operating costs on an annual
basis and to provide for the possibility of using a discount rate to dis=-
count the magnitude of future operac.ug expenditures. If - is the discount

rate, the present value of four years of operating costs is given by :

*As mentioned above, a user may "push" a "button' illustrated on the video
screen by touching that button with the light pen. In the text we rep-
resent the pushing of a button by enclosing the button label within a
rectangular figure. Permanent coatrol buttons are shown as rectangular
figures with sharp corners. User-defined entity buttons are enclosed
in {igures with rounded corners. Rectangular blocks are not placed
around those items that are entered through the terminal keyboard.
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2 3 4
PV = rOCl +r OC2 4+ r 003 +r 064

where OCi is the operating cost in year 1. Notice that if r 18 set to
one, operating cost is obtained by simply adding the annual operating costs
for each of the four years of operation. If r 1is less than one, then
operating costs in future years are not counted so heavily as current

expenditures., To input the above equation the decision maker finds it
convenient to Jdefine the entity annual operating costs as a vector whose

components are the "annual operating costs'" in each of the next four years.
He types DISCOUNT RATE and then ANNUAL OPERATING COSTS(I). The "I" will
be used to denote the year tc which the annual operating cost corresponds.
The first year will be denoted by I =1 , the second by I = 2 , and so
forth, The branching structure momentarily disappears and then reappears
as shown {n Figure 5,7.

Using the light pen, the entlty blocks shown in the func-
tion graph and the "calculator" in the left-hand corner of the screen,
our decision maker '"pushes" the buttons that express operating cost as

the present value of the four annual operating costs:*

OPERATING CUST } = ANNUAL X' DISCOUNT
e OPERATING  ~ ~ | RATE

COST (1) .-
ANNUAL™ x! DISCOUNT @. 2 |
[ﬂ OPERATING " RATE

- COST (2) )
R o “ . asa - .-——s.\ ' l'_-’
(| ANNUAL X . DISCOUNT  @N | 3|
|+ ! OPERATING © . RATE e

| C.OST (3)‘ N e

r ANNUAL ™ ™" X' DISCOUNT Nk |
|+ . OPERATING ' ~ RATE S

= \gusT (4)_

The equation appears near the bottom

*The up arrow button denotes that the quantity immediately following
is to be interpreted as an exponent,
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of the screen as shown in Figure 5.7.
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Next our decision maker touches his light pen to the block

marked "annual operating cost (I)." The familiar question, appears on

the screen this time asking him what he would need to know to define

the annual operating cost in year I. The decision maker types EQUIPMENT

: REPLACEMENT COST (I) and COST OF MAINTAINING MISSILES READY (I), thinking

‘ these to be the two maln components, and uses the calculator to define
annual operating costs in year I as the sum of these quantities. The video
screen now appears as in Figure 5.8, Similarly, he defines the cost of
maintaining missile readiness as the product of the cost of maintaining one
1 ' missile ready times the number of missiles maintained ready. The screen

appears as in Figure 5.9,

Notice that while the decision maker began by thinking about
very aggregated concepts such as total military cost of the proposed mig=-

sile, the branching technique leads him to consider increasingly specific

ftems, such as the cost of malntaining a single missile ready and the number
of missiles maintalued ready, which are much easier to estimate. Our
| decisfon maker may continue to use the branching technique until he has

defined all entities in terms of elementzl quantities that he feels com=-

T R g e

fortable estimating. As illustrated by the definition of operator 2 in
Figure 5.7, operators need not be confined to simple arithmetic functions f
like addition and multiplication. 1If necessary more general functlons or

subrout {nes may be used to define the relationships among system entities.

j
b. The Completed Cost Model %

For the purposes of our example, let us suppose that our
decislion maker continues expanding the system model by branching from
entities until the graph appears as ahown in Figure 5.10. We imagine
at this point that the decision maker has decided that with a little

RPN,

thought he can come up with estimates of values for the elemental state

variable entities, and he sees that the important decision alternatives--

"missile system chosen" and "number of missiles maintained ready"-~have

been represented. Of course, the structure shown in the figure is

unrealistic because it is overly simplified and some important considera-

tions have been omitted. In a real analysis the decision maker would
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undoubtedly wish to expand the structure to a considerably higher level
of detail than that shown in Figure 5.10. Nevertheless, the function

graph of the figure will suffice for illustration.

To avold the necessity of modeling the military value of
the missile systems we have assumed that the competing missiles have been

judged to have equal militery value. However, similar procedures to that

described above could be used by the decision maker to construct a branch-

RS

ing structure representing the military value of the missile system chosen.
The decision maker may feel, for example, that the value of the proposed

missile system should be assessed in two areas. First, it should provide

deterrence to a thermonuclear war. Second, if war does come the new mis-
sile should help us to minimize damage to ourselves and speed a favorable é
military outcome of the conflict., The function graph developed to model i
the military value of the migsile system might look something like that i

B S g o o

shown In Figure 5.4. l
1

To speclfy the uvperator that maps the various military
objectlves Into military value, each objective could be given a relative |

welght. This could be done by constructing tradeoff curves that 1illus-

trate the decision maker’s willingness to trade one objective off against

another., The operators in the function graph representing military value

S

i R 2R e I S S - o R

b niad

: would thus be defined by mathematical relationships that are primarily
) ; subjective in nature. For this reason they might be more difficult to
determine than those used to determine economic cost, but the principle

v : Is the same.

When combined with analytic operator definitions the func-
tion graph shown in Figure 5.10 completely specifies the deterministic

P ¢ structure necessary for evaluating the economic cost of various decislon

strategies, Given specific alternatives for the decision variables '"misslile

"

3 ; system chosen'" and '"number of missiles maintained ready," and given specific

values for the elemental state variables, evaluation of the function graph

will produce a total economic cost.

The function graph, therefore, represents a mathematical
cost model for the missile decision. An important question is, 'How good
is this model?" CADMUS supplies a number of tests for model evaluation.
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c. Model Analysis

CADMUS has the ability to perform sensicivity anclyses. In
sensitivity analysis, the decision analyst tries to determine the change in
the model’s selection of alternative actions or outcome values that would
result from a given change in the model’s assumptions. Assumptions that
produce small changes are apparently relatively insignificant, while assump=-
tions that produce considerable changes are likely quite significant.

CADMUS provides for a number of automatic sensitivity calculations. For
example, suppose our decision maker felt uneasy about his estimate of the
number of times the missile will be placed on alert and therefore he is
uncertain about the amount of time the missile must maintain a state of
readiness. Naturally, the tota’  time the missile must maintain a state of
readiness strongly influences missile system operating costs, He might feel
that the number of alerts could add up to anything between zero and fifty
per year. Knowing how much this uncertainty contributes to uncertainty
about total economic cost will be important in determining whether further
effort should be expended to clarify the prediction of future missile
alerts.

Suppose therefore that our decision maker wants to calcu~
late how total economic cost chenges as the number of alerts is varied.
He begins by choosing a specific alternative for the decision variable:

|MISSILE SYSTEM CHOSEN [=] JUGGERNAUT

N et e e amt o o PP .

Control buttons for the two alternatives, ARES and JUGGERNAUT, will have
been defined when the cperators 11 through 17 in Figure 5.10 are defined.

Next nominal values are assigned to elemental state variables:

(AVG. DURATION OF ALERT; [=| {20 Minutes

t s - —— A————— s\ ot 4 4 A =0

[t

 EQUTPMENT REPLACEMENT *, (=! [2.8 ., [1.5] , [1.6], [1.8] mrLLIon
- .....gost L L T -

; e o —— — T

DISCOUNT RATE) CIR U

*To simnlify notation, numbers that require a sequence of button
pushing operations will be represented as if they could be specified

by a siagle bp;;on;w r example, the notation [ 1.1 | means that
the buttons [l [.! (1| are pushed in succession.
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By touching his light pen to the tSENS‘[TIVITY control

e b

button, the decision maker signals CADMUS that he wisaes to perform a

é sensitivity calulation. Pushing |DEPENDENT VARIABLE| and then (ECONOMIC
] COST ) establishes economic cost as the dependent variable in the rela-

tionship. Our decision maker wishes to learn how the value of this vari-

ki wiromezie S wid ol e

,—.
Kt

able varies as he varies the number of yearly missile alerts between the

values of zero and 50. To communicate this to CADMUS he uses his light

o me—— .

- : — | P
pen to push the respective buttons lEEPE?E?EEﬁE.XéRIABLE and NUM?ER

OF ALERTS PER YEAR ) and then FROM [0) [d [50 . The video screen

momentarily goes blank and then appears as Figure 5.11, showing the funcw

T I o et N

b

tional relationship established between the variables "total economic cost"

and "number of alerts per year'*

@j : The decislion maker mav wish to test this same sensitivity J

assuming instead that the ARES missile ls chosen., 1f he were to set

"missile system chosen' to "ARES" and re-run the sensitivity, the result

might look something like that shown In Figure 5,12, An instructive

exercise would be to display simultaneously the sensitivity plots for
the two decision alternatives. By storing the results and then pushing

RECALL , our decision maker could generate the plot shown In Tigure 5.13%%,

Such a plot {llustrates the closed loop sensitivity of "economic cost" to
"number of alerts per year." The closed loop sensitivity shows how the
optimal value of the dependent variable changes with different values for
the independent variable. Assuming that the military value of the ARES
and JUGGERNAUT are identical, the objective is to choose the decision

T A A s e g T e ey s

strategy that minimizes "economic cost". The closed loop sensitivity is
thercfore given by the plecewise linear curve formed by the lower envelope
of the two straight line curves. If the number of alerts {s anticipated
to be roughly greater than 27 per year, the system with the lower opera-
ting cost (ARES) should be chosen. Otherwise the JUGGERNAUT should be

chosen,

i
¥
3
I

¥
A

*The numerical values presented here are purely hypothetical.

**Since our objectlve here is not to define the operation of CADMUS in
detail, the mechanics of instructing the system to store and recall
graphic {nformation are not discursed.
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CADMUS may be requested to perform a number of additional
calculations which will enable the decision maker to evaluate his alter-

native decision strategies. For example, the decision maker may ask CADMUS

to check for dominated courses of action, that is, decision strategies that

for all possible state outcomes yield values that are equaled or exceeded
by other alternative strategies. The decision maker may ask to see the

"outcome lottery" associated with a given course of action. CADMUS will
then supply the cumulative probability distribution that shows the prob-
ability that the outcome associated with that decision strategy will have

a value less than or equal to any given amount.

To illustrate, suppose that our decision maker were to
specify a probability distribution for the number of alerts per year such
as that shown in Figure 5.14. CADMUS would provide a number of mecthods
to aid the dacision maker in assessing such a dictribution. He would
also specify probability distributions for all other uncertain variables
that strongly influence economic cost., Then, by touching his light pen
to PROB DIST ("probability distribution' control button) and then to
ECONOMIC COST , the decision maker would instruet CADMUS to produce
cumulative probability diastributuions for "economic cost" under each de-
cision alternative., The system would respond as shown in Figure 5.15.
The curve associated with a given missile system shows the probability

that its total economic cost would fall below any given amount,

C. Decision Trees and Influence Diagrams

This section describes a novel approach to probabilistic modeling,
one that builds on a fundamental conceptual tool of decision analysig==-
decision trees=-and introduces a related concept--influence diagrams.
Together, these conceptual tools constitute a basic foundation for a
system of probabilistic modeling aids, in the same way that structural
graph3 form the basis for deterministic modeling. In fact, further re-
see.,ch may show that a syrn*hesis of these concepts will provide a gen-

eral tool for all types of modeling.
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1. Properties of Decision Trees and Influence Diagrams

One of the most perplexing aspects of making decisions under
uncertainty is the problem of representing and encoding probabilistic
dependencies. A probabilistic dependency is one that arises as a result

of uncertainty, For example, if a2 and b are known variables and

c=ga+bh, then it is clear that ¢ depends on both a and b , both

in a vernacular sense and In a mathematical sense. However, suppose a

is known and b is uncertain. Then ¢ 1s probabilistically dependent
on b but not on a . The reason is that knowing the specific value of
; b tells us somethling new about ¢ , but there is no such possibility

with respect to a.

a, Probabilistic Independence

o T T

Probabilistic independence, like the assigning of prob-

i f ability itself, depends on the state of Information possessed by the as-
: gessor, Let x , y , and z be aleatory state variables of interest,

ﬁ which can be either continuous or discrete. Then {x|S) is the distribu-

pRT

tion assigned to x given the state of information S, Two variables

N Y L T R AT L e s R T

x and y are probabilistically independent given the state of informa-
i : tion S8 1f {x,y|S} = {x|S} {y|S} or equivalently, if {(x|y,S} = {x|S}.

b. Expansion

Regardless of whether x and y are probabilistically

I T

independent, we can write

% {(x,yIs} = {x]y,S} {yls} j
% | = {ylx,5} {x|s) |
; We call this the "chain rule of probabilities". Note that for three events 5
: ; there are six possible representations. 1
s , ! {x,y,z|8} = {xly,z,8) {ylz,8) {z|8} §

{(x|y,z,8} {zly,8} {y|s}
{ylx,z,8} {x|z,8) (2|8}
{ylx,z,8) {z]x,8) {x]|S)
{z|x,y,8) {x|y,5) {yls)
{z]%,y,45} {yl|x,8) {x|8)

118
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For n variables there are n! possible expansions, each

requiring the assignment of a different set of probabilities and each
logically equivalent to the rest. However, while the assessments are
logically equivalent there may be considerable differences in the ease
with which the decision maker can provide them. Thus the question of

which expansion to use In a problem is far from trivial.

Cs Probability Trees

Associated with each expansion is a probability tree. Thus

the expansion
{x’)'9zls} = (XIYszns} (YIZQS} {z]8)

implies the tree shown in Figure 5.16., The tree 1s a successlon of nodes
with branches emanating from each node to represent different possible
values of a variable. The first assignment made Is the probability of
various values of z. The probability uf each value of y is assigned
conditioned on a particular value of 2z , and placed on the portlon of
the tree indicated by that value. Finally, the probabilitles of various
levels of x are assessed given particular values of z and y and placed
on the portion of the ‘.ee specified by those values, When this has been
done for all possible values of x, y , and z the tree ils complete.
The probability of any particular path through the tree is obtained by
multlplying the values along the branches and is {(x,y,z|5}. Notice that
the tree cnnventlon uses small circles to represent chance nodes. If we
wish to focus on the succession in the tree rather than the detailed con-

nections, we can draw the tree in the generic form shown in Figure 5.17.

d. Decision Trees

If a variable is controlled by a decision maker, it 1s
represented in a tree by a decision node., Thus if y were a decision
variable, Figure 5.17 could be redrawn as Figure 5.18. This tree states
that the decision maker is initially uncertain about 2z and has assigned
a probability distribution {z|S)} to it. However, he will know 2z at the
time he must set y , the decision variable. This node is represented,

like all decision nodes, by a small square box. Once z and y are
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FIGURE 6.16 A PROBABILITY TREE
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FIGURE 6.18 A GENERIC DECISION TREE

given, the decision maker will still be uncertain about x; he has rep-
resented thls uncertalinty by {x|y,z,S). Notice that a decislon tree im=
plies both a partlcular expansion of the probability assessments and a

gtatement of the Information available when a decislon 1s made.

e. Probability Assignment for Decision Trees

The major problem with decislon trees arises from the first
of these characteristics. The order of expansion required by the decision
tree ls rarely the natural order in which to assess the decision maker’s
Information. The decision tree order is only the simplest form for as-
sessment when each variable 18 probabilistically dependent on all pre=-
cecedling aleatory and decision variables, 1If, as is usually tle case, many
independence assertions can be made, assessments are best done in a dif=-
ferent order from that used in the decision tree. This usually means
that we first draw a probability tree in an expansion form convenient to
the decision maker and have him use this tree for assignment; it is called
a probability assignment tree. Later the information 18 processed into
the form required by the decision tree by representing it in one of the
alternative expansion orders. This is often called "using Bayes’ Rule"
or "flipping the tree." It is a fundamental operation permitted by the

arbltrariness in the expansion vrder.

Conslder, for example, the decision tree of Figure 5,18
with one additional aleatory varisble v added, as shown in Figure 5.19,
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FIGURE 519 A FOUR NODE DECISION TREE

{zls} Y {xlz,ﬂ Jle, \Z !.S}

FIGURE 620 A FOYR NODE DECISION TREE GIVEN THE ASSERTION THAT v
WILL NOT AFFECT x

{os} fos}

FIGURE B.21 THE PROBABILITY ASSIGNMENT TREE
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We interpret 2z as a test result that will become known, y as our de=-

cision, x as the outcome variable to which the test is relevant, and

v as the value we shall receive if the test indicates 2z , we decide vy ,
and x is the value of the outcome variable. Often y will not affect
x in any way, even though y affects v. We write ({x|y,z,S)} = {(x|z,8}
to represent this assertion, Furthermore, it might be the case that the
value will not depend on the test outcome but only on x. This assertion

of independence is written:
{V|X.Y’2.S> - {V[leoS}

With these independence assertions we have the tree shown
in Figure 5.,20. This tree requires the specification of {z[S) and {x|z,S}:
the probablility of various test results and the probability of various
outcomes glven test results, But typically in sicuations of this kind,
the decision maker would prefer to assign directly the probabilities of
different outcomes {x|S} and then the probabilities of differing test
results given the outcome, {z|x,S). In other words, he would prefer to
mzke his asgessments in the probability tree of Figure 5,21 and then
have them processed to fit the decision tree . f Flgure 5.20. Since
{x|S}Y (z|x8) = {z|S} {x|z8) = {x,z|S) this is no more than choosing one
expansion over the other. The exact processing required for the decision
tree ls then the summation,

{z|S}) = {zlx,8) {x|S}

X

and division:

{x]z,8) = {zlx.§i|£§lﬁ)

Recall, however, that this whole procedure was possible only because

variable x did not depend on the decislon variable vy.

f. Influence Diagrams

An influence diagram is a way of describing the dependen-
cies among random variables and decisions. An influence diagram can be
used to visualize the probabllistic dependencies in a decision analysis,
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and specify the states of information for which independencies can be

assumed to exist.

Figure 5.22 shows how influence diagrams represent the

dependencies among random variables and decisions. A random variable

THE PROBABILITIES ASSOCIATED WITH RANDOM
VARIABLE B DEPEND ON THE OQUTCOME OF
RANDOM VARIABLE A

—0

THE PROBABILITY OF RANDOM VARIABLE D
DEPENDS ON DECISION C,

THE DECISION MAKER KNOWS THE OUTCOME OF
RADOM VARIABLE E WHEN DECISION F IS MADE

THE DECISION MAKER KNOWS DECISION G WHEN
DECISION H 1§ MADE,

FIGURE 6.22 DEFINITIONS USED IN INFLUENCE DIAGRAMS

is represented by a circle containing its name or number. An arrow
pointing from random variable A to random variable B means that the
outcome of A can influence the probabilities associated with B, An
arrow pointing to a decision from either another decision or a random
vaiable means that the decision is made with the knowledge of the outcome
of the other decision or random variable. A connected set of squares and
circles is called an influence diagram because it shows how random vari-

ables and decisions influence each other.

The influence diagram in Figure 5.23(a) states that the
probability distribution assigned to x may depend on the value of y ,
while the influence diagram in Figure 5.23(b) asserts that x and vy
are probablistically independent for the state of information with which
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(a) A SIMPLE INFLUENCE DIAGRAM

©
©

(b) AN EVEN SIMPLER INFLUENCE DIAGRAM

©
t
©

{e} AN ALTERNATE REPRESENTATION

FIGURE 523 TWO NODE INFLUENCE DIAGRAMS

the diagram wes drawn. Note that the diagram of Flgure 5,23(a) really

makes no assertinn about the probabilistic relationship of x and vy

since, as we know, any joint probability {x,y{S) can be represented in

the form (x,ylS} = {(x|y,S8} {yIS}. However, since {x,y|S) = {y|x,8} {(x[S)} ,
the influence diagram of Figure 5.23(a) can be redrawn as shown In Figure
5.,23(ec); both are completely general representations requiring no indepen-
dence assertions. Whlle the directlon of the arrow is irrelevant for this
simple example, it is used in more complicated problems to specify the ;

states of information upon which independence assertions are made.

Similarly, with three variables x , y , 2z there are
six possible Influence diagrams of complete generality, one corresponding
to each of the possible expansions we developed earlier. They are shown
in Flgure 5,24, While all of these representations are logically equiv-
alent, they again differ in their suitability for assessment purposes.

In large decision problems, the influence diagrams can display the needed

ST LR

assessments in a very useful way.
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FIGURE 5.24 ALTERNATE INFLUENCE DIAGRAMS FOR {x, v, zis}

g. Graphical Manipulation

Since there are many alternative representations of an in-
fluence diagram, we might ask what manipulations can be performed on an
influence diagram to change it into another form that is logically equiv-

PR

alent.

. The first observation we should make is that an arrow can
f alwaye be added between two nodes without making an additional assertion

i
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|
o
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about the independence of the two corresponding variables. That is,
saying that x may depend on variable y is not equivalent to saying
that x must depend on y . Thus the diagram of Figure 5.23(b) can be
changed into either of the diagrams shown in Figures 5.23(a) and 5.23(c)

without making an erroneous assertion. However, the reverse procedure

could lead to an erroneous assertion. Creating additional influence arrows

will not change any probability assessment, but may destroy explicit recog-

nition of independencies in the influence diagram,

Thus, Figures 5.23(a) and 5.23(¢) are two equivalent influ-
ence diagrams. They are equivalent in that they imply the same possibility

of dependencies between x and y given the state of information on which

readiciid

the dlagram was based,

An arrow jolning two nodes in an influence diagram may be

reversed provided that all probability assignments are based on the same

e )

set of information. For example, consider the influence diagram of

Figure 5.25(a). Since the probability assignments to both x and y are
made given knowledge of 2z the arrow joining them can be reversed as
shown in Figure 5.25(b) without making any incorrect or additlonal asser-
tions about the possible independence of x and y . Figure 5.25(c)
shows another example where the assignment of probabllity to x does not
depend on the value of 2z , and so it might appear that no reversal was
possible, However, recall that we can always add an arrow to a diagram
without making an incorrect assertion. Thus we can change the diagram of
Figure 5,25(c) to that of Figure 5.25(a), and then that of Figure 5.25(a) é
to that of Figure 5.25(b). The Influence arrow hetween y and X can I

be reversed after an influence arrow 1s inserted between 2z and x.

The graphical manipulation procedure may yleld more than f

ohe result, For example, consider the reversal of the three-node influ- E
ence diagram shown In Step 1 of Figure 5.26(a). Suppose we first attempt

to reverse the y to X arrow. In order that x and y have only

common influences, we must provide x with an influence from 2z (Step

2), before verforming the reversal (Step 3). Since both x and y now

are conditioned on only 2z , the influence joining them may be reversed
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{a) AN INFLUENCE DIAGRAM
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(b} ARROW BETWEEN x AND y REVERSED
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{t) ANOTHER INFLUENCE DIAGRAM
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(Step 4). Finally, since both x and y are assigned probabilities
: after z isg known, the influence joining them can be reversed (Step 5).

A ; Suppose, however, that the same diagram (Step A, Figure
: 5.26(b)) were transformed by first reversing the arrow joining 2z and

é ' y (Step B), which is possible since y and 2z are based on the same

state of infoirmation (i.e. there are no arrows into y or z from any ;
other node in Step A of Figure 5.26(b)). Then the arrow joining x
| and y could be reversed (Step C) because neither x nor y now has :

an arrow leading into it from any other node. Both this transformation
and the one in Figure 5.26(a) are correct. However, Step C of Figure
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5.26(b) shows that there 18 no need to indicate conditioning of 2z on
%. Step 5 of Figure 5.26(a) contains this unnecessary but not incorrect

influence.

h. Influence Diagrams with Decision Variables

We shall now extend the concept of influence diagrams to

Include decision variables. We begin with a formal definition of influ-
ence diagrams.
An influence diagram is a directed graph baving no loops.

It contains two types of nodes:
- Declsion nodes represented by boxes ( );

- Chance nodes represented by circles ( ),

Arrows hetween node pairs indicate Influences of two types:

- Informational influences represented by arrows leading

into a decision node, these show exactly which variables
will be known by the decision maker at the time that
the decision is made;

- Conditioning influences, represented by arrows leading

into a chance node. These show the variables on which

the probability assignment to the chance node variable

will be conditioned.

The lnformational influences on a decision node represent a basic cause-

effect ordering whereas the conditional influences into a chance node rep~
resent, as we have seen, a somewhat arbitrary order of conditioning which
may not correspond to any cause-effect notion and which may be changed by

application of the laws of probability (e.g. Bayes’ Rule).

Figure 5.27 is an example of an influence diagram. Chance node
variables a, b, ¢, e, £, ¢, h, {+, 3§, k, 1, m,
and o all indicate aleatory variables whose probabilities must be as-
signed given their respective conditioning influences. Decision node

variables d and n represent decision variables that must be set as

a function of their respective informational influences. For example,
the probability assignment to variable { 1is conditioned upon variables
f, g, and 1, and only these variables. In inferential notation
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FIGURE 6,27 AN INFLUENCE DIAGRAM WITH DECISION NODES

this assignment Is {i|f,g,l1,E}), where E represents a speclal § ,

the Initial state of Information upon whlch the construction of the entire
diagram is based. As another example, the decision variable d Is set
with knowledge of varlables a and c , and only these variables, Thus,

d {8 a functlon of a and ec.

i. Node Terminology

One of the most important, but most subtle, aspects of an
influence dlagram 18 the set of possible additional influences that are
not shown on the diagram. An influence dfagram asserts that these

missing influences do not exlist.

In order to illustrate this characteristic of influence

diagrams more clearly we must make a few more definitlons.

A path from one node to another node Is a set of influence
arrows connected head to tail that forms a directed line

from one node tu another.
With respect to any given node we make the following definitions:

The predecessor set of a node is the set of all nodes having
a path leading to the given node.
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The direct predecessor set of a node is the set of
nodes having an influence arrow connected directly to

the given node.

The indirect predecessor set of a node is the set
formed by removing from its predecessor set all

elements of its direct predecessor set.

The successor set of a node ig the set of all nodes

having a path leading from the given node.

The direct successor set of a node is the set of
nodes having an influence arrow connected directly

from the given node.

The indirect successor set of a node is the set

formed by removing from its successor set all

elements of its direct surcessor set.

We refer to members of these sets as predecessors, direct predecessors,
iIndirect predecessors, successors, direct successors, and indirect succes=

sors. Figure 5.28 shows the composition of each of these sets in rela-

tion to node g.

J. Missing Influences

We now are prepared to investigate the implications of in-
fluences not shown in a diagram. A given node could not have any arrows
coming into it from successor nodes because this addition would form a
pfohibited loop in the diagram. However, it could conceivably have an

additional arrow coming from any other node.

The situation for decision nodes is relatively simple. The
diagram asserts that the only information available when any decision is
made is that represented by the direct predecessors of the decision., The
addition of a new arrow, or {nformational influence, would usually add to
the information available for decision making, and destroy the original
logic of the diagram. The influence diagram asserts that this information
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FIGURE 5,28 SOME SETS DEFINED BY THE NODE g

is not directly avallable; however, all or part of it might be inferred

indirectly from the direct predecessor set.

The slituation for chance nodes Is more complex. The dia=-
gram partlally constrains the probability conditioning (expans.on) order
for chance nodes. 1In general, the probability asslignment for a given
chance node, x , might be conditioned on all non-successors (except for
x itself). Let us call this set Nx , and let Dx be the set of direct
predecessors of x ., The set Dx is, of course, contained in Nx. The
diagram asserts that the probabllity assignment to x given Nx is the

same as to x gilven Dx; that is,
{X|NX,E} 'X|onE}

The additlon of a new arrow or conditioning influence from an element of
Nx to x would increase the set of direct predecessors and seem to in-
crease the dimensionallty of the conditional probability asslignment.
While this addition would not violate the logic of the diagram, it would
cause a loss of information regarding independence of the added condi-
tloning influence. The original diagram asserts that all information in
the set Nx that Is relevant to the probabillty assignment to x 1s in=-
directly summarized by the direct predecessors Dx o In classical terms
with respect to x , Dx is a sufficient statistic for Nx'
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Returning to Figure 5,27 as an example, the probability

assignment to variable g 1s in principle conditioned on all variables
except g, 1, J , and k . However, the diagram asserts that the
variables on which g depends are sufficiently summarized by only e
and h, This means {g|a,b,c,d,e,f,h,1,mn,0,E} = {gle,h,E}, This is

a s:irong and useful assertion relating many of the variables in the

dlagram by the lack of arrows as well as by the ones that are present.

We have seen that an influence diagram indicates a specific,
but possibly non=unique order for conditioning probability assignments
a8 well as the information avallable as the basis for each decision.
When decision rules are specified for each declsion node and probability
assignments are made for each chance node, the influence diagram relation-
ships can be used to develop the jolnt probability distribution for all

variables.

k. Relationship of Influence Diagrams to Decision Trees

Some influence diagrams do not have corresponding decision
trees., As in a decision tree, all probability assignments in an influence
diagram==including the assignment limitations represented by the structure==
must be based on a base state of information, E, Unlike a decision tree,
the nodes in an influence dlagram do not have to be totally ordered nor
do they have to depend directly on all predecessors. The freedom from
total ordering allows convenient probabilistic assessment and computation.
The freadom from dependence on all predecessors allows decisions to be
based on informational event sets that are incompatible with a '"single
decision maker" point of view. If a single decision maker is assumed not
to forget information, then the direct predecessor set of one decision
must be a subset of the direct predessor set of any subsequent decision.
In the influence diagram of Figure 5.28 decisions d and n have mutu=-
ally exclusive direct predecessor sets, (a,c) and (m). This situation

could not be represented with a decision tree.

1f the informational arrows shown as dashed lines in Figure
5.29 are added to Figure 5,28, then the Influence diagram can be repre-
sented by a decision tree. Many different valid decision trees can be
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FIGURE 5,29 AN INFLUENCE DIAGRAM REPRESENTABLE BY A DECISION TREE

constructed from this new influence diagram. The only conditions are
that they must (1) preserve the ordering of the influence diagram and (2)
not allow a chance node to be a predecessor of a decision node for which
it 18 not a direct predecessor. For example, the chance node m must
not appear ahead of decision node d in a decision tree because this
would imply that the decision rule for d could depend on m , which is

not the case.

The situation becomes more complex when we add a node such

as p 1in Figure 5.30. If we were to construct a decision tree beginning

T o
\ o o305 -0

OG0

’

FIGURE B.30 INFLUENCE DIAGRAM REQUIRING PROBABILISTIC MANIPULATION
BEFORE DECISION TREE CONSTRUCTION
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with chance node p 1t would imply that the decision rules at nodes d
and n could depend on p , which is not the actual case., Node p
represents a variable that is used in the probability assignment model

but that is not observable by the decision maker at the time that he

makes his decisions., In this situation, we would normally use the laws

5 of probability (e.g. Bayes’ Rule) to eliminate the conditioning of ¢

| on p . This process would lead to a new influence diagram reflecting

a change in the sequence of conditioning. This would result in the inclu=~

glon of additional influences.

In Figure 5,31, the dashed arrow represents an influence
that has been "turned around" by Bayes’ Rule. The resulting diagram can
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| % FIGURE B.31 INFLUENCE DIAGRAM READY FOR DEVELOPMENT INTO A DECISION TREE
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be developed into a decision tree without further processing of probabili-
ties. Also note that the change in the influence diagram required only
information already specified by the original influence diagram (Figure
3.30) and its associated numerical probability assignments, Thus it can
be carried out by a routine procedure,
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The foregoing considerations motivate two new definitions.

A decision network is an influence diagram:

(1) that implies a total ordering among decision nodes,
(i1) where each decision node and its direct predecessors

directly influence all successor decision nodes.

@ A decision tree network is a decision ratwork:

: : (111) where all predecessors of each decision node are direct

]
predecessors. 3

Requirement (i) is the "single decision maker" condition and requirement

(11) 18 the "no forgetting" condition. These two conditions guaranteec s
that a decision tree can be constructed, possibly after some probabilistic

processing. Requirement (iii) assures that no probabilistiec processing

o ———_— s

i8 needed so that a decision tree can be constructed in direct correspon-

| ' dence with the influence diagram,

1 : As an example consider the standard inferential decision prob=-

i lem represented by the decision network of Figure 5.32(a). As discussed

] é : earlier, this influence diagram cannot be used to generate a decision tree
E : directly because the decision node ¢ has a non-direct predecessor that ]
i represents an unobservable chance variable. To convert this decision net-

| : 3 work to a suitable decision tree network we simply reverse the arrow from

a fro b, which {8 permissible because they have only common predecessors,

namely none. We thus achieve the decision tree network of Figure 5,32(b),

G S

and with redrawing we arrive at Figure 5,32(e).

Specifying the limitations on possible conditioning by drawing
' the influence diagram may be the most significant step in probability

assignment, The remaining task is to specify the numerical probability

BB e S0 L A B B A5 0 BT,

AR

of each chance node variable conditioned on its direct predecessor vari-

able, This task can be carried out using the assessment procedure dis-

cussed in Chapter IV.

e
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FIGURE 632 THE PROCESS OF CONVERTING A DECISION
NETWORK TO A DECISION TREE NETWORK
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2, An Example of the Use of Influence Diagrams

The importance of improved methods of problem modeling can best
be appreciated in an example. The example that follows is a modified
4 version of an analysis performed a few years ago on the value of infor-
‘ mation gathering with respect to U,S, policy decitions regarding the
' Persion Gulf.

e o e Y e e
anrmareme =

Certain recent events have had a major effect on the timeliness
of the analysis. We shall present tnhe example from the viewpoint cf the
time In it was prepared rather than rewrite it to incorporate what time

has revealed.
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a. Description of a Model Based on Influence Diagrams

The approach used In the analysls was to model the sequence
of events that might lead from U,S, policy decisions to the development
of potential conflicts in the Persian Gulf, U.S. policy decisions do not

always have a direct effect on the likelihood that a conflict will occur

in the Persian Gulf. More often U.S. actions will influence one or more
of a set of Iinterrelated and uncertain events, which in turn affect the
likelihood of conflict.

The model required subjective assessments of the probabil=-
itles that uncertain events would occur in the Perslan Gulf in the sub-
sequent five year period. However the probability that any one event might
occur was i{nfluenced by whether or not other events had already occurred.
Thug, the person making the assessment had to condition his probability
estimates on assumptions about the occurrence or non-occurrence of other
events., For example, an estimate of the lLikelihood that a revolutlonary
regime would take power in Saudi Arabia within the five=-year period de-
pended on whether or not King Falsal dled and whether or not the tradl-
tional government of Saudi Arabla avoided political infighting and Insta-
billity.

The model did not require a subject to estimate the time
at which an uncertaln event would occur. Instead he had to estimate the
probabllity that the event would happen within the following five years,

or before the occurrence of a major war Iin the area.

Because the model was concerned primarily with events that
could be influenced by U.S. policy decisions, not all the events that
could affect the likelihood of a confllct in the Persian Gulf were included
in the model. 1In fact, in some cases, events not included in the model
might have Influenced events in the Gulf more strongly than those shown
in the model. For example, the occurrence of a revolution in Saudi Arabia
during the five year period may have been influenced more by the rate of
Saud) Arablan economic and social development than by the level of revolu=
tlonary activity in the Persian Gulf, However, there appeared to be few,
if any, U.5. policy decisions that could directly influence the rate of
political and social development in Saudi Arabia. The effects of avents
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not shown explicitly in the model were reflected, however, in the proba-

bility assessments.

Table 5.1 shows the sequence of decisions and events that
were actually used. Since U.S. decisions affecting the Persin Gulf
might have been based on information derived from several different
intelligence activities, the first step in the model was to hypothesize
the deployment of a particular intelligence activity. For the purpose
of the analysis, it was assumed that an intelligence activity would
gather information about one or more of the events described in the
model. If an intelligence antivity was deployed, the United States
would recelve information from thls activity, predicting whether that

event would or would not occur.

After recelving this information from the intelligence
activity, the United States would make some initial policy decisions
with respect to the Persian Gulf. The alternatives available, which
would influence the general course of events In the Persian Gulf, in-
cluded continuing strong support for Israel and removing the U,S. naval
force stationeq in the Persian Gulf.,

While the United States made these decisions, the Soviet
Union would be making a similar set of decisions that would influence
the course of events in the Persian Gulf. From the point of view of U.S.
policy, Soviet decisions appeared as uncertain events. Soviet influence
was characterized in the model by two principal decisions: whether or
not to increase the flow of military equipment to revolutionary organiza=-
tlons {n the area, and whether or not to introduce a naval force compar=-
able to the U.,S. force in the Persian Gulf.

Clearly, these two choices were an abstraction of the many
possibilities avallable to the Soviet Unlon., For example, the Soviet
Union could indirectly but substant#ally increase the amount of military
equipment supplied to revolutionary organizations by increasing arms ship=
ments to either If;q or South Yemen., Similarly, in choosing to introduce
naval forces into the Persian Culf, the Russians had several options as
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Table 5.1

SEQUENCE OF DECISIONS AND EVENTS
IN THE INFLUENCE DIAGRAM EXAMPLE

I. U.S. decision to deploy and intelligence activity
*

II. Information received from the intelligence activity

,
B
5 .
g . i
A
]

i
f L ITTI. 1Initial U.S8. policy decisions
v 2, The United States continues its strong diplomatic support

g
é . 3. |

L. The actilvity reports that an event will occur.

for Israel and continues to supply significant amounts of

military equipment to Israel. ;
The United States moves the naval force it currently has in :

f the Persian Culf to a base in the Indian Ocean.

o

-

IV, Soviet Influence
4, The Soviets substantially increase the amount of military

T T

equipment they supply to revolutionary organizations in the

Persian Gulf.
5. The Soviets increase their own military presence in the

A TR NI e ot ain

-~

Persian Gulf.

V. Arab-Israeli conflict and revolutionary activity g
6. The Arabs and Israel reach a political settlement that is 3
acceptable to most Arabs in the Persian Gulf states,
7. There 1s a significant increase in the level of revolutionary
organization and activity in the Persian Gulf states.

T S YR T e St
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V1. Instability and revolution in Saudia Arabia
8. King Faisal dies.
9. Considerable internal instability develops in Saudi Arabia

G —re O << 20T

s s

VII. Instability and revolution in Iran
1l. The Shah of Iran dies.
12, Considerable internal instability develops in Iran.

13. A revolutionary regime takes power in Iran.
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VIII.

IX.

Table 5.1 (Concluded)

U.S. policy decisions to support Persian Gulf states

14, The United States glves diplomatic support and large
amounts of military equipment to Saudi Arabia.

15. The United States gives diplomatic support and large

amounts of military equipment to Iran.

Conflict between Saudi Arabia and Iran

16, A revolutionary regime takes power in Qatar, Bahrain, or
the U.A.E.

17. Saudi Arabia and Iran engage in a serious military conflict.

18. Iraq enters the conflict between Saudi Arabia and Iran.

Conflict between Iraq and Kuwalt or Iran.

19. A revolutionary regime takes power in Kuwait.

20. Iraq engages in military conflict with Kuwait--
possibly in an attempt to annex Kuwait.

21. Iraq and Iran enter a serious military conflict.
22, Saudi Arabia enters the conflict between Iran and Iraq.
142
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to the composition and strength of those forces. However, the Soviet de-

cision hypothesized in the model served as a first approximation of poge

sible Soviet influence in the area.

Once the decisions of the United States and Soviet Union
] had been specified, it was possible to estimate the likelihood of events
that set the stage for potential conflicts in the Persian Gulf. The two

g 4 events considered in this phase of the model were the future development
% of the Arab-Israeli conflict and the level of revolutionary organization
! and activity in the Perslan Gulf states, These two events were closely

¢ interrelated, and this relationship was reflected in the model.

After the status of the Arab~Israeli conflict and the level

of revolutlionary activity were specified, the model consldered the possi-

TR

bility of instability and revolution in both Saudi Arabia and Iran, the

two major traditional powers in the area, For each country, the model

began with the possibility that the current natlonal leader would die

T

within the next five years--an important factor given the individualistic

; style of government in both countries. The next step was to consider the
i : likelihood that the goveruments of Saudi Arabia and Iran would experience

a period of i{nternal instability and political turmoil, conditloned on

I o A 15

whether or not the current rulers of each country were living. Then, de-

pending on whether or not these events had occurred, the model dealt with

the likelihood of revolutionary changes in government in either Saudl Arabia |
or Iran or both.
Once the types of government in Saudi Arabia and Iran had

been determined, the United States had to declde whether or not to con=-

tinue support for those Persian Gulf states, To determine whether the

RSP

type of governments in Saudi Arabia and Iran had an influence on U.S.

policy, the model considered the U.S. support decisions after resolving

i e+ e iy 0

the question of revolutions, 1In particular, the model addressed the
quest fon ~f whether it was a good idea for the United States to continue

its support for Saudi Arabia or Iran after a revolutionary government had

e
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g taken power.
?E When the U.S. support decisions had been made, the model e

specified all the events and decisions needed to allow estimates of the
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likelihood of major conflicts in the Persian Gulf, In a sense, the steps

numbered I to VIII in Table 5.1 defined the various scenarios, or alter-
native sequences of events and decisions, that might lead to a major con=-
flict in the Persian Gulf., For each of these possible scenarios, the
model considered the possibility of a major conflict between Saudi Arabia
and Iran, and the most likely ways in which such a conflict could develop.

The model also allowed for the possibility that Iraq might choose to enter
into such a conflict.

Similarly, the model considered the possibility of a major
conflict between either Iraq or Iran, or between Iraq and Kuwait. These k.
two conflicts were closely related, since the Shah of Iran had stated that ﬁ
he would come to the aid of Kuwalt in the event of an attempted Iraqi §
takeover of Kuwalt. As before, the model allowed for t'i: possibiltity 4 3

that the Saudl Arablians might become involved in such a conflict between
Iraq and Iran.

By combining the occurrence or nonoccurrence of edach of i
the events and decisions in the model, it was possible to develop a large L
number of Persian Gulf scenarios, as demonstrated in Figure 5.33. The
figure shows the scenarios in the form of a decision tree, starting on

the left and developing to the right, Each node in the tree represents

efther a U,S. declsion or an uncercain event. U.$5. decisions are repre-

sented by squares and uncertain events are represented by circles.
For example, the small square to the left of the "DEPLOY ACTIVITY" branch

indicated that the deployment of an intelligence activity was a U.S., de- .
|
cislion, k)

o b e ik sk ikl

By progressing from the left to the right along any parti-
cular path through the tree, it was possible tc specify a unique Persian :
Gulf scenario. For example, taking the branch marked "DEPLOY ACTIVITY" ;
would mean that we were considering only those scenarios in which the
United States had deployed an intelligence activity to gain information
about one of the subsequent events in the model., If an intelligence
activity was deployed, it could either predict that an event would occur
or predict that an event would not occur. If we assumed that the activity
had predicted that an event would occur, we would proceed to the branch
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FIGURE 8,33 DEVELOPMENT OF PERSIAN GULF SCENARIOS
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marked "ACTIVITY PREDICTS EVENT," which leads to another U.S. decision,
The decision at that point was whether or not the United States should
continue its strong support for larael. Assuming that the United States
decided to continue supporting Israel was equivalent to taking the path
marked "U,S. SUPPORTS ISRAEL" near the top of Figure 5.33. At the end
of this branch was another small square indicating another U.S. decision:
whether or not to remove the ncoval force stationed in the Persian Gulf.
A U,S. decision to move the fleet out of the Gulf was equivalent to moving
down the branch marked "U,S. MOVES FLEET." At the end of this branch is
an event node indicated by a small circle, which dealt with the level of
Soviet aid to revolutionary activities and organizations in the Persian
Gulf, Thus, by continuing to take one branch after another through the

tree, we could completely specify one scenario for the Parsian Gulf,

Other scenarios were specified by other paths through the
tree For example, if we took the tree branches closest to the bottom of
Figure 5.33, we had the scenario where the United States did not deploy
an Intelligence activity, did not support Israel, and did not move its
fleet out of the Persian Gulf.

When we added all of the branches associated with the many
decisions and events in the model, the decision tree became so large
that it was not possible to show the entire tree in a single f.gure.
Figure 5,34 shows the generic decision tree representing the Persian Gulf
scenarios., Here one must imagine that each of the disconnected decision
or event nodes 18 attached to the ends of all of the preceding bronches
in the decision tree. Connecting the various decisions and event nodes
in this way would generate the entire decision tree and specify all of

the scenarios in the Persian Gulf model.

A simple calculation showed that there were approximately 6.3
million scenarios considered in this model. While many of these scenarios
were very unlikely, each contributed to the conclusions of the model.
Instead of considering only those scenarios that had the highest probabil-
$1y or seemed the most plausible--as one might in an intuitive analysis
of the problem~~the model allowed us to aggregate the effects of many low=

probability scenarios.
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Even though there were relatively few U.S. decisions repre=-

sented in the Persian Gulf model, there were a large number of policies

avallable to the United States. A policy was a complete description of

U.8. decisions that would be taken in response to any possible future

scenario. There were approximately 262,000 U.S. policles represented

by the Persian Gulf model.

b. Using the Model

A model as large as the one for the Persian Gulf had two

related problems, First, it was difficult to manipulate a model repre-

senting over 6 million scenarios, even using the capabilities of large,

high=-speed computers. fven when the computer was capable of handling

this many scenarios, it was difficult to Interpret the results without

a more efficient way of conceptualizing the problem, The second problem

was potentially even more limiting., If each of the millions of uncertain

events represented in the model required a separate probabflity assess-

ment, it would never have been feasible to collect the data necessary to
analyze the model and study its implications.

The answer to these problems lay In carefully defining the

dependenclies among the uncertain events in the model and In using these

dependencles to eliminate redundant portlons of the model. While the de-

cision tree shown in Figures 5.33 and 5.34 shows explicitly all of the

scenarfos in the model, it does not show which events and decisfons had

to be known In order to assess the likelihood of any uncertain event,
For example, when assessing the likelihood that the Arab~

Israsel!l conflict would be resolved in the next five yeara, a middle East

expert may have wished to know whether or not the United States would

continue Lts strong military support for lsrael. However, when assessing

the probabflity that there would be an increase in the level of revolu-
tlonary activity in the Persian Gulf, the same expetrt might have been in-

terested only in whether or not there was a settlement in the Arab~lsraeli
disputae, not in whether the settlement was brought about by a continustion

of U.8. support for lsrael. In this case, the likelihood of an increase
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In revolutionary activity was independent of U.S. policy once the status
of the Arab-Israeli conflict had been speciflied.

To show such dependencies among uncertain gvents, we used
an influence diagram. The influence diagram in Figure 5.35 shows the
assumed dependencies of events and decisions in the Persian Gulf model.
The numbers in the circles and squares corresponded to the numbered
events and decisions in Table 5.1. For example, the square containing
the number 2 represented the U,S. decision to continue giving Israel
strong diplomatic support and significant amounts of military equipment, !
The clrcle containing a 6 represented the uncertain event that the Arabs é
and lsrael would reach a peolitical settlement that was acceptable to most
of the Arabs In the Persian Gulf states. The arrow leading from declslon
2 to event 6 meant that the probability that the Arabs and Israel would :
reach an acceptable politlcal settlement depended on whether or not the ;

Unlted States contlnued its strong diplomatic support of lsracl,

To estimate the likelihood of any uncertain event shown
in Flgure 5,35, it was necessary to know the status of all of the events
and decisions that had arrows leading Into the circle represnenting the
event, For example, Figure 5.35 shows that inltlal U.$., and Soviet pol=
icy declsion with respect to the Persian Gulf (decisions 2 and 3, and
events 4 and 5) Influenced subsequent events indirectly through thelr
{mpact on the llkelihood that there would be a signiflicant increase in i

the level of revolutionary organization and activity in the area (event 7).

O Ll o

Defining the dependencies of the events and decisions in
the Persian Gulf model, as shown in Figure 5.35, drastically reduced the
number of probability assessments required of experts. In this case, the
number of probability assessments was reduced from several million to ap-
proximately 100, Although experts disagreed over some of the influence
linkages shown In Figure 5.35, none of the proposed changes would have ;
resulted in a slgnificantly different number of probability assessments, 4
More importantly, the Influence diagram in Figure 5.35 gave the experts
a language with which to communicate their differerces of opinion over
the relationships between U.S. policy decisions and events that might have
economic implications for tha United SBtates.
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In addition to reducing the number of probability assess-
ments required for the model, careful definitions of the dependencies be-
tween uncertain events greatly reduced the number of calculations required
to manipulate the model, The influence diagram in Figure 5.35 pinpoints
those portions of the decision tree in which redundant probability calcu=-
lations occured. By eliminating the redundancies, it was possible to
reduce both the size of the decision tree and the number of calculations
required to analyze the tree, When this was dore, the model could be re~
duced from a decision tree with millions of decision and event nodes to
a highly integrated decision tree with less than a thousand nodes.
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Appendix A

PROBABILISTIC DEPENDENCE

To simplify the tasks of assessing and processing uncertalin infor-
mation it is often necessary to assume that random varlables are inde-
pendent. With this assumption, it 18 pcrsible to assess the probablility
distributlon for each random varlable separately, and deal with rolatively
simple marginal probability distributions rather than complicated condi~
tional distributlons., Most large decision analyslis projects contaln
within them some implicit or explicit assumptions about the independence

of various random variables.

In order to describe independencies, we need to have a clear under-
standing of the types of independence that are possible., Two random var-
lables are elther dependent or independent. However, as we shall see,
there are twenty-two different combinations of dependence and Independence
that can exist among three random variables. When there are more than
three random varlables, there are many different comblnatlons of depen~

dence and Independence that exlist among them,

This sectlon describes the twenty-two combinatlons of dependence and
independence that can exist among three random variables and gives an ex-
ample of each combination., This toplc has been discussed by Tribus [15].
However, Tribus considers only twelve of the twenty-two possible combin-
ations of dependence and Independence that can exist among three random

varlables,

l. Independence Equation for Two Random Variables

When we assert that two random variables are independent, we are
assuming that thelr joint probability distribution i8 equal to the prod=-
uct of the two marginal probability distributions. In other words, if
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we say that random variables A and B are independent, then we are

claiming that the following equation is true,

{AB} = (A} (B}

Alternatively if we say that A and B are dependent, then we are claim-
ing that the equation above 1is nrot true. To avoid writing an equaticn
for each independence asserti. 1, we will denote the assumption of indepen~

dence between random variables A and B as follows: I(A,B). 1If A

and B are dependent, then we write T(A,B). If there are only two random

variables, we must have I(A,B) or T}A,B).

2. Independence Equations for Three Random Variables

If we have three random variables~- A, B, and C «-then there
are ten possible independence equations. For example, we can assume that
the three random variables are mutually independent, which means that
their joint probability distribution is equal to the product of the three
marginal distributions. Mutual independence is equivalent to the fol-

lowing erquation.
{ABC} = (A} (B} (C)

If the three random variables are not mutually independent, then this
equation is not true. In our notation mutual independence is written
I(A,B,C)., 1If the three random variables are not mutually .ndependent,
we write TYA.B,C). The lack of mutual independence does not mean that
the three random variables are mutually dependent, since other types
of independence are possible., Mutual dependence means that there are

no independencies among any of the random variables.

Another type of independence that can be asserted among the three
random variables is that two of the three random variables are indepen~
dent without regard to the third., When we have three random variables--
A, B, and C =--we can assert I(A,B) or equivaiently

e BV i ikt
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{AB} = {A} (B}

This means that A and B are independent as long as we do not know C.

Obviously, we can make similar independence assertions for A and C ,

or B and C.

Another type of independence assertion is that one of the random
variables is independent of the distribution for the other two. If we
assume that A 18 independent of B and C , then

{ABC) = {A} (BC}

In our notation, this independence equation is denoted I(A,BC). This
equation means that learning the value of A will not change the joint
probability distribution for B and C . Alternatively, it means that
learning B and C will not change the probability distribution for A.
We could also assert that B 1s {ndependent of A and C , or that C
i8 independent of A and B.

When we learn the value of one of the three random variables, it
changes our state of information and therefore can change our assumptions
about independence for the remaining random variables. This allows us
to make a different kind of independence assertion. For example, we can
assume that when we know C, A and B are independent. The equation

tion for this Ilndependence assertion is
(AB|C} = {a|C} {B|C}

*
When {C) # 0, the following equation is equivalent to the one above.

AC) {BC

(ABC} = =73

*This is not a restrictive condition since {AB|C), {(A|C), and {B|C} are
not defined when {C)} = 0.
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This independence assumption is denoted I(A,B|C). As before we can find
some other independence assumptions by permuting the random variables.
Thus, we can assume that B and C are independént when we know A , or

we can assume that A and C are independent when we know B,

In this discussion it is assumed that independence can only be as-

‘ serted among quantities that are each based on the same state of information.
i Independence among quantities that are based on different states of infor-
; 5 mation is difficult to define since the different states of information
may themselves affect the validity of the independence assumption. For

example, can we assert independence between A by itse!f, and B given

C? The independence equation corresponding to this statement is not well
defined. We are trying to assert independence between {A} and {B|C), and
by analogy with the other independence equations we should be able to

' . equate the product of these two quantities to some other quantity. How=-
ever, it 1s not clear whether the product should equal {AB}, {AB|C}, or i

something else,

In summary, there are ten possible independence equations or asser-

i tions that can be made for three random variables. These independence

equations are listed below.

(1) I(A,B,C) : ({ABC) = (A} (B} {C) i
(2) 1(AB) : (B} = {A} (B) 5
4 (3) 1(A,C) ¢ {AC) = {A} (C} ’
: _ (4) 1(B,C) : {BC) = (B} (%} ;
i (5) I(A,BC) : <{ABC} = {A) {BC}) '“
1 -:,__ (6) I(B,AC) : <{ABC) = {B} {AC) 4-
_ (7) 1(C,AB) : {ABC) = {C} {AB}

? (8) 1I(A,BIC) : ({AB|C} = (AlC) {B|C}
e " (9) 1(ACIB) : {AC|B} = {A|B) {C|B) i
ST (10 1(8,Cl&) : (BC|A} = {BIA} {C|A) g

3. Relationships Among Independence Equations

Since each of these independence equations can be either true or not

true there would be 210 ¢. 1,024 possible combinations of dependence and
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independence among three random variables if it were not for the fact that
some of the independence equations imply others, We can use the relation-
ships among the ten independence equations to eliminate most of the 1,024
possible combjn-~+ions, leaving twenty-two possible combinations of inde=

pendence assert.ons that can exist among three random variables.

The first relatlonship among the independence equations is that mu-

tual independence implies all of the other types of independence.

T(A,B,C) =~ 1I(A,B), I(A,C), I(B,C), I(A,BC), I(B,AC),
1(C,AB), I(A,B|C), I(A,C|B), I(B,C|A)

To prove this relationshlp we start with the equation for mutual indepen=-
dence: {ABC) = {A)} (B} (C} . If we Integrate both sides of thls equatlon
over all possible values of C , we have ({AB} = {A} (B}. This proves
that A and B are independent without regard to C , or I(A,B). Sim=-
ilarly, by integrating over all possible values of B and A , we find
that {AC) = (A} {(C) and ({BC) = (B} {C} . These two equations are
equlvalent to I(A,C) and I(B,C)., If we substltute these equations into
the equation for mutual independence, we have

{ABC} = {A) {BC} = {B} {AC) = {C) {AB} , or I(A,BC), I(B,AC), and

1(C,AB). By using these results we show that

(ABC) _ {A) (B} (C) _
s o (A} (B)

=« {A|C) {B|C} when {C} # 0"

{AB|C} =

This is equivalent to I(A,B|C). In exactly the same way we can prove
1(A,C|B} and I(B,C|A) when B # 0 and A ¢ 0. Thus, mutual

independence implies all other types of independence.

*This is not a restrictive condition since {AB|C}, (A|C}, and {B|C} are
not defined when {C} = 0.
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The other relationshipa among the Independence equations are

listed below. The proofs for these relationships are similar to the one

for mutual independence, and they are outlined briefly,

4.

1. I(A,B,C) - I(A:B)’ I(A,C). I(B.C); I(A.BC). I(B,AC).
1(C,AB), I(A,B|C), I(A,C|B), I(B,C|A)

2. I(A,BC) =~ 1I(A,B), I(A,C)
Proof: I1(A,BC) = {ABC) = {A) (BC) -~ (ABC) = {A} (BC)
C C

~ {AB} = {A) {B} - 1I(A,B)
3. I(A,BC) =~ I(A,B|C), I(A,C|B)

Proof:  I(A,BC) =~ 1I(A,B), I(A,C)
- (AB} = {A} (B}, {AC} = {A} (C}

(A) - Ségl - iﬁgl
(B} {C}
{AB) (BC) _ {AC) {BC)

1(A,BC) =~ {ABC) = {A) {BC} = *={33 C)
- 1I(A,B[C), I(A,C|B)

4,  1(A,BC), I(B,C) = 1I(A,B,C)
Proof:  1I(B,C) = {BC} = {B) {C}
I(A,BC) - ({ABC} = {A} {BC} = {A) (B} {C)
- 1(a,B8,0)

5. 1(A,BC), I(B,AC) =~ 1I(A,B,C)
Proof: 1(B,AC) - 1I(B,C)
1(a,BC), I(B,C) =~ 1(A,B,C)

6. 1(A,BC), I(B,C|A) - 1I(A,B,C)
Proof: I(A,BC) ~ I(A,B), I(A,C)
- {AB) = {A} {B), {AC) = (A} {(C}

1(B,ClA) - ({ABC) = iﬂ%—‘;ﬁﬂ = {A) {B} {C)

- I(A,B,0)

7. 1(B,C|A), I(A,B) =~ 1I(B,AC)
Proof: I(A,B) - (AB} = (A} (B)

1(B,ClA) = {ABC) = iﬁé%xéﬂgl = (B} {AC)
- I(BpAc)

Combinations of Independence Equations

The twenty-two possible combinations of independence equations are

shown graphically in Figure A.l1. The remaining 1,002 combinations of
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FIGURE A.1 COMBINATIONS OF INDEPENDENCE EQUATIONS
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independence equations are not possible since they violate one of the
relationships above. The twenty-two combinations of independence equa-
tions have been labeled with numbers in square brackets at the right of
A.l. The first combination corresponds to mutual independence and the
twenty-second combination corresponds to mutual dependence. The other
twenty combinations correspond to various intermediate levels of indepen-

dence among three random variables.

The combinations of independence equations are demonstrated below
with simple examples based on f£lipping four types of coins: fair, biased,
thick and magnetized coins. The random variables in each example describe
whether a head or tall results from flipping the coins. These random
variables are discrete, but It is easy to generalize the examples to in-
clude continuous random variables. Examples are provided for only 10
of the 22 possible combinations of independence equations, but any com=~

bination can be demonstrated by permuting the random variables in these

examples.

Example (1): Combination (1] in Figure A.l
1(A,B,C), I(A,BC), I(B,AC), I(C,AB), I(A,BIC),
I(A,C|B), I(B,C|A), I(A,B), I(A,C), I(B,C)

In this example A, B, C correspond to the outcomes of flipping threce
fair coins. The joint probability mass function for A, B, and C is:

H T H T
A H 0,125 0.125 0,125 0.125 H A
T 0.125 0.125 0.125 0.125 T
C =i C=T

Example (2): Combination [2] in Figure A.l

T1(A,B,C), I(A,BC), I(B,AC), I(C,AB), 1(A,B|C),
1(A,C|R), I(B,C]A), I(A,B), I(A,), I(B,C)
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In this example A corresponds to the outcome of flipping a fair coin,

and B and C correspond to the outcomes of flipping two magnetic coins.
The probability that a head will occur when the first magnetic coin is
tossed is 50%., However, there is a 60% chance that the second magnetic
coin will land with the same side up as the first magnetic coin., Neither
of the magnetic coins are affected by the outcome of tossing the fair c¢.in,

The conditional probabilities for this example are:

{A=H} = (B=H} = 0.5
{C~H|B=H} = {C=T|B=T} = 0.6

The joint probability mass function for the three random variables is:

H T H T
B H 0.15 0.10 0.15 0.10 H B
T 0,10 0.15 0.10 0.15 T
A=H A=T

Example (3): Combination 5] in Figure A.l
1(A,B,C), I(A,BC), I(B,AC), 1(C,AB), I(A,B|C),
I(A,C|B), I(B,C|A), T(A,B), I(A,C), L(B,C)

In this example A, B, and C each correspond to the eame flip of a

falr coin. The conditional probabilities for this exumple are:

{A=H} =~ 0.5
{B=H|A=H} = {B=T|A=T) = 1,0
{C=H|A=H} = {C=T|A=T) = 1,0

The joint probability mass function for the three random variables

is:
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Example (4): Combination [6] in Figure A,l
T(a,B,C), 1(4,BC), I(B,AC), I(C,AB), I(A,B|C),
1(A,C|B), I(B,C|A), I(A,B), I(A,C), I(B,C)

In this example A corresponds to the outcome of flipping a fair coin,
If A I8 a head, then B and C must also be heads. If A 1s a tail,
then B and C both correspond to the same flip of another fair coin,

The conditional probabilities for this example are:
{A=H} = 0.5
{BwH|AwH) = 1.0, (B«T|AaT} = 0.5

{CwH|B=H) = {C=T|BwT) = 1.0

The joint probability mass function for the three random variables is:

C c
H T H T
B H 0.5 0 0.25 0 H B
0 0 0 0.25 T
A=H A=T

Example (5): Combination [8] in Figure A.l
T(A,B,C), I(A,BC), I(B,AC), I(C,AB), I(A,B|C),
T(A,CIB), I(B,ClA), I(A,B), I(A,C), I(B,C)

In this example C corresponds to the outrcome of flipping a thick coin
(a cylinder) that can land on its edge in addition to heads or tails.
Possible outcomes for C are heads (H), tails (T), and edge (E), A and
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correspond to the outcome of flipping two biased coins, whare the bilas
The conditional probabilities

B
of each coin depends on the outcome of C .,

for this example are!

: (A=H|CwH)} = 0.4, {B=H|C=H) = 0.6
2 (A=H|C=T} = 0.5, {(B=H|C=T} = 0.l
(A=H|C=E} = 0.7, {B=H|C=E} = 0.6
{C=H) = {CaT) w 0,4, {(C=E)} = 0.2

R

The joint probability mass function for the three random variables

g is:
S
{ ; B B B
' : H 1 H T H T f
' A H 0.096 0.064  0.020 0.180 (.08 0.056 H A §
T 0.144 0.096  0.020 0.180  0.036 0.026 T ’
C = H C=T C=E

RN i = e v e

¥ =

It can be shown that this combination of independence assertions cannot

exist tor three binary events., Thus it was necessary for C to have

three possible outcomes in the example above.

T R T T T A S5

Example (6): Combination (9] in Flgure A.l
1(A,8,C), I(A,BC), I(B,AC), I(C,AB), I(A,BIC),

f ‘ T(A,C|B), 1(B,C{A), I(A,B), 1(A,C), L(B,C)

M= ooy

s L TR

In this exumple
A und B correspond to the outcomes of flipping two biased coins, where

the direction in which the coins are biased depends on C. The condi-

tional probabilities for this example are:

2 C cotrresponds to the outcome of flipping a fair coin,

{A=H|CwH) = {(B=H|C=H} = U.6 ;
{AwH|C=T) = (BsH|CnT) = 0.4 ;

{CwH) = 0.5
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The joint probability mass function for the three random variables is

H T H T
A H 0.18 0.12 0.08 0.12 H A
T 0.12 0.08 0.12 0.18 T
C=H C=T

Example (7): Combination [15) in Figure A.l
T(A,B,C), 1(A,BC), L(B,AC), L(C,AB), I(A,B|C),

1(A,C|B), I(B,C|A), I(A,B), I(A,C), I(B,C)

In this example C corresponds to the outcome of flipping a fair coin,
A and B correspond to the outcomes of flipping two magnetized colns,
where the direction in which B 1s magnetied depends on C. The condi=~
tional probabilities for this example are:

{C=H)} = (B=H)} = 0,05
{A=H|B=H,C=H} = {AwT|B=T,C=H) = 0,6
{A=H|B=H,C~T)} = {(A=T|B=T,CnT} = 0.4

The Joint probability mass function for the three random variables is:

H T H T
A H 0.15 0.10 0.10 0.15 H A
T 0.10 0.15 0.15 o0.10 T
C=H C=T

Example (8): Combination (16]) in Figure A.l
1(A,B,C), 1(A,BC), I(B,AC), I(C,AB), I(A,B|C),
T(A,C|B), I(B,C|A), I(A,B), I(A,C), I(B,C)

In this example A corresponds to the outcome of flipping a fair coin.
B and C correspond to the outcomes of flipping two magnetired coins,
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' where the outcome of A 18 used to determine how strongly the coins are

| magnetized. The conditional probabilities for this exawnple are:
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{A=H} = (B=H} = 0.5
{C=H|BwH,AwH} = {C=T|B=T, A=)} = 0,8
{Cm=H|B=H,A=T) = {C=T|B=T,A=T} = 0.6

TN T e i e

E The joint probahility mass function for the three random variables
| is:

] { H T H T
: B H 0.20 0.05 0.15 0.10 H B
-: T 0,05 0.20 0,10 0.15 T

' A=H A =T
o
ﬁ { Example (9): Combination [18] in Figure A.l
: { T(A,B,C), T(A,BC), I(B,AC), 1(C,AB), I(A,B|C),
L T(A,C|B), T(B,C|A), I(A,B), I(A,C), 1(B,C)
g In this example A and B correspond to outcomes of flipping two falir
g coins, C corresponds to the outcome of flipping a biased coin where
E the amount that the coin ls blased depends on A and B. The condi-
; tional probabilites for this example are:
% {A=H} = {B=H} = 0.5
{ {CmH|AwH,B=T} = 0.4
! ‘. (CH|A=H,BuT) = {C=H|A=T,B=H} = 0.6

{C~H|A=H,B=H) = 0.8
% A The joint probability mass function for the three random variables ls:
1 B B

H T H T

A H 92,20 0.15 0.05 0.10 H A
T 0.15 0.10 0.10 0.15 T
CaH C=T
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Example (10): Combination [22]) in Figure A.l
T(A,B,C), T(A,BC), I(B,AC), I(C,AB), I(A,B|C),
T(A,CIB), I(B,C|A), T(A,B), I(A,C), I(B,C)

In this example A, B, and C , correspond to the outcome of flipping
three magnetic coins. There is a 50% chance that the first coin flipped
will come up heads, and there is a 60% chance that the second coin flipped
will land with the same side up as the first. If the first two coins are
both heads or both tails, there is an 80% chance that the third coin flipped
will have the same outcome; otherwise the probability of heads on the third
flip 1is 50%. The conditional probabilities for this example are:

{A=H} = 0,5

{B=H|A=H) = B=T|A=T} = 0,6
{C=H|A=H,B=H)} = {C=T|A=T,B=T} = (.8
{C=H |A=H,BwT} = {C=H|A=T,B=H)} = 0.5

The joint probability mass function for the three random variables is:
H T H T
A H 0.24 0.10 0.06 0.10 H A
T 0.10 0.06 0.10 0.24 T

C=H C=T

E. An Additional Relationship Among the Independence Equations

Some of the comblhations of independence equations require the joint
distribution for the three random variables to contain several zeros.
This means that certain combinations of outcomes for the three random var=-
iables are nct possible even though each of the random variables can in-
dividually assume the same outcomes., In Example (3), A, B, and C
can each be heads or tails, but it is not possible for one to be a head

when another is a tail,
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1f we assume that the joint distribution cannot equal zero when the
individual marginal distributions are not zero, it is possible to prove
an additional relationship among the ten independence equations.

I(A,B|C), I(A,C|B) - TI(A,BC) 1if (BC) # 0

The assumption the {BC} is not zero allows us to divide by this quantity
in the following proof:

1(A,B|C), I(A,C|B) =~ {ABC) = (Aczc{}“) - {ABzB?C)
- (AC) (B} = {AB} {C} =~ (AC) (B) = ({AB) {C)

i C C

: = (A} (B} = (AB) - 1I(A,B)

I(A,CIB), I(A,B) =~ 1(A,BC)

e e = O W m

WA G

If this relationship is added to the seven discussed above, It can

be used to eliminate four of the twenty--two possible combinations of

om0

independence equations. The four combinations that are eliminated are

o,

ITRITEN S Ty AT T

; numbered [5), (6], [7], and [10] in Figure A... The remaining elghteen

combinations of Independence equations are still possible.

F, Encoding the Twenty-Two Combinations of Independence Equatons é

A subjects’ state of information about several uncertain quantities

b W1 T S T ST o R W

can be represented by a wide variety of possible combinations of indepen=-

dence equations, even when the problem contains as few as three random

i variables. One of the principal motivations for assuming that random %

R R

variables are independent ls to limit the amount of probabllity encoding

? required to specify the joint probability distribution for all random :

i variables. Although there are many vossible combinations of Lndependence

- equations, the degree of difficulty associated with assessing the uncer-
' taintles necessary to specify the joint distribution can be determined by
some very simple properties of the independence equations that are assumed

: to be true. We can place the ten possible independence equations for three
] ; random variables in the four caterories as shown below:
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Category 1: 1I(A,B,C) : {ABC) = {A) (B) {(C)

Catagory 2: I(A,BC) {ABC} = {A} {BC}
1(B,AC) {ABC} = (B} {(AC)
1(C,AB) {ABC) = {C} {AB)

Category 3: I(A,B|C) : <{AB|C) = {A|C) {(B|C)
I1(A,C|{B) : ({AC|B} = {A|B} {C|B)
I(B,C]A) : ({BClA) = (B|A} {C|A)

Category 4: I(A,B) : <{AB) = {A) {B)
I(A,C) ¢ <{(AC) = {A} (C}
I(B,C) : {(BC) = (B} {(C)

The degree of difffculty assoclated with assessing the probabilities
needed to specify the joint distribution for A, B , and C depends

only on which categoriee of independence assumptions contain equations
As a measure of the degree of difficulty
B , and

that are assumed to be true.
asgoclated with the assessment problem, we will assume that A ,
C are each discrete random variables with probability mass functions that
contaln n possaible rutcomes; we will then determinc the minimum number

of probabilites required to specify the joint mass function.

If the three random varisbles are assumed to be mutually independent
(Category 1), then the joint distribution can be determined by assessing
the three marginal distributions and multiplying them together. To spec-
ify each of the marginal probability mass functions, we would need to
asgsess n probabilities. Therefore, to determine the joint probability

mass function for A, B , and C , we would need to assess 3n prch-

abiiities.

If our state of information about the three-random variables is such
that we can 7ot assume mutual independence, but can assume that one of the
independence equations in Category 2 is true, we can determine the joint
probability density function by amsessing one of the marginal distribu-
tions and the joint distribution for the two remaining random variables.
We need to assess n probabllities to determine the marginal distribu-
tion, and n2 probabilities to determine the joint distribution for two

random variables. Thus, when we can assume that one of the independence

et
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equations in Category 2 is true, but that the independence equation in

Category | is not true, we would need to assess (n2 + n) probabilities

This situation occurs for the combinations of independence equations num-
bered {2), [3), and [4] in Figure A.l.

If our state of information about the three random variables is such
that we cannot assume that the independence equations in Categories 1
and 2 are true, but one of the independence equations in Category 3 is
true, we can determine the joint probability density function by assessing
the marginal distribution for one of the three random variables and the
conditional distributions for the other two random variables, given the
first. In this situation, we would need to assess n probabilities for
the marginal distribution, and n2 probabllities for each of the two
conditional distributions. Thus, when the independence equations in Cat=-
egories | and 2 are not true, but one of the independence equations in
Category 3 is true, we will need to assess (2n2 + n) probabilities.
This situation occurs for the combinations of independence equations num=
bered [5] through [14] in Figure A.l.

If our state of information about the three random variables is
such that none of the Independence equations in Categories 1, 2, and 3
are true, but one of the independence equations in Category 4 1is true,
then we can determine the joint density function by assessing two mar=-
ginal distributions and the conditional distributlon for the third ran=-
dom variable, given the first two. However, to assess the condltional
distribution, we would need to assess n3 probabilites., Since we can
assess the joint distribution for all three random variables with n3
probabilites, we can minimize the number of probabilitles assessed by
doing so. We could also assess the joint distribution for all three
random variables by assessing the n3 probabilities in the case where
none of the independent equations are true. Thus, when none of the inde-
pendence equations in Categories 1, 2, and 3 are true, we will need to
assess at least n3 probabilities.

The number of probabilities that must be assessed to determine the

joint distribution for all three random variables is summarized in the
following table as a function of the categories of independence equations.
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Categories of Number of

Independence Probabi® {ties
Equations Assessed

1 3n

2 n2 + n

3 2n2 +n

4 n3

The number of probabilities that must be assessed to determine the
joint distribution is a rough measure of the degree of difficulty asso-~
clated with *he encoding process. For a three-variable problem where
each variabl: has many possible values--corresponding to large values of
n--mutual indepenuer.e (Category l) or part.al independence (Categories
2 and 3) can be powerful simplifying assumptions., Where more than three

variables are involved the independence assumptions are ever more userul.

The number of prcbabilities that must be assessed to determine the
joint distribution is a rough measur>» of the degree of difficulty asso=-
clated with the encoding process. For a three-variable problem where each
variable hus many possible values--corresponding to large values of n--
mutual independence (Category 1) or partiA1 independence (Categories 2
and 3) can be powerful s'mplifying assumptions. Where more than three

variables are .avolved the independence assumptions are even more useful.

e T e el i 2

S i e SR e



- - N 3 T TR TS T T T SRR T ST =

=
o
—t
W.
2
[
=
o
g
=3
«G
o>
&

;m m :

b — W.

3 g :

=1 [ ..“

< b= i

. o i

A = H

< < J
o A
b 3.
w) §
a i
nnw A - :
B uw :
=
= 1
B l
> {
o
<4
o
<

I - s i e e e R - R e e -

AR,

it con dodincini e

B ez




Appendix B

APPROXIMATE METHODS OF CALCULATING THE VALUE OF INFORMATION

P

%. The purpose of this section is to explain how approximate methods %
ez

1 can be used to determine the value of information., The approximate value-

of-information calculations are based on deterministic sensitivities, 4
and decisions to increase or decrease the size of a model can be based a

on the approximate values of information.

1. Introduction

. l : Decision problems may be grouped according to the the number of

i | : stages they contain. We define a half-stage problem as one without deci-

e rcacs Rt

sion variables. A single-stage problem has any number of decision vari-

ables followed by any number of state variables. Multistage problems

; b : are characterized by decision variables separated by state variables.
% : . Figure B.l classified typical problems. Any decision problem can be

solved to any desired accuracy using trees; however, in many problems

] i certain "smoothness" properties can be exploited to find answers as accu-
- : i rate as those from trees at a fraction of the computational cost. For

one~half or one-stage problems specific procedures can be programmed that

; | ‘ are adequate for the majority of problems. Two-stage procedures exist ]
; % for a class of problems. Practical procedures do not exist for many~ :
g' f ! stage problems [
1

| For simplicity we will treat the case of risk indifference. However,

E ' i Rice [14) has shown that only minor modifications are required to extend

. 4
1 K . the framework to include risk aversion. %

. A value function and a deterministic model, can be expanded in a

: Taylor series about the mean of the state variables and the corresponding

; optlmum‘setting of the decision variables. This approach is exact for a
| “y.¢——"fI§ET::;gage problem that is quadratic in continuous state and decision

L 4
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variables and for discrete decision problems where the value function is

a linear function o>f the state variables.

Howard has developed and documented this approach for change of var-
iable problems in his course notes for EES 221 [7]) at Stanford University,
and for one~stage problems in his paper Proximal Decision Analysis [6].
His results are algebraic expressions for the mean and variance of the
profit lottery and for the value of clairvoyance on the state variables.
Means, variances, and covariances for the state variables, as well as
the partial dereivations ot rofit with respect to the state and
decision variables are re' .. - * puts., To automate Howard’s methodology,
a computer would be giveu th or protit function and the moments
of the state variables. The computer would automatically run sensi-

tivities to estimate the reqr .red partial derivatives.

Rice has generalized Howard’s approach. The general approach also
starts with sensitivities and ends with the value of clairvoyance on each
state variable. However, the middle step is eliminated, going directly
from sensitivities to value of clalrvoyance without evaluating partial
derivatives. For continuous problems, ones with continuous state and
declsion variables, the two methods are equivalent. The alvantuge of
the direct method is that is also works for problems with discrete deci-

sion and/or state variables and with discontinuous value functions.

2, Computerizing the Sinple-Stage Model

For a computer tu find the value of clairvoyance for a state variable
given only a single-stage profit function and the moments (or distribu=-
tions) of the state variables, two conditions must hold:

(1) The state variables must be probabilistically independent
of decision variables,

(11) The value structure must be of the form v(s,d): a deter-
ministic model which assigns a single profit measure to
each complete vactor of state and decision variables.

Neither condition is restrictive. The Entrepreneur’s Problem in Proximal
Dacision Analysis [6) demoustrates how apparent violations of (i) can be
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rectified by reformulating the deterministic model. The model form
via,d) 4in (4i) 18 common to many discrete as well as continuous problems,

The output for the computer program is the approximate value of in-
i formation. The expected value of clairvoyance on the 1’th state variable
is the prior expectation of the conditional expected value given 8, less

the prior expected value:

<v_ |E> = <4vig, ,E>> = <v|E>
ci i

Alternatlvely, we can focus on changes of decision by subtracting the
prior expected value from the conditional expected value before taking

AL i

the second expectation:

e

<v  |E> = <<yls,,E> = <v|E>|E>
i [o] { i

7 B T

The value of clairvoyance is the expected increase in value from making

denisions after si is revealed rather than before. We define the

' quuntity:

T T e oy

{
! j <V|si,E> - <v|E>

as the stochastic compensation: "stochastic" because each term is an ex-

R NP R A .

4 ! g pected value, and "compensation' because the decision is reoptimized to
compensate for the departure of the 1’th state variable from its mean. 3

Using the new terminnlogy, the value of clairvoyance on the 1°th state

ey

varlable 1s the expected stochastic compensation.

To approximate the value of clairvoyance, deterministic compensation

i
)
1
i

o may be substituted for stochastic nompensation.

3, Steps to Compute the Approximate Value of information

To calculate the approximate value of information fqp the single
; stage problem, a computer must complete the following lcoﬁlz
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L)
2)
3)
4)
5)
6)

The procedure is remarkably robust. It works regardless of whether
the state and decision variables are continuous or discrete. However,
because of difference in optimization techniques the algorithms to achieve

step 1=6 are different for discrete and continuous decision variables.

Discrete Decision Variable

For a discrete decision variable steps 2-4 can be performed simul-
taneously. As illustrated in Figure B.2 for two decisicn alternatives,
the value v muat be computed for each alternative at E', and at

;'i 8 . 'Then the open-loop sensitivity is the curve with the highest
value at ;', the one for d1 in the exemple., The closed loop sensitive
ity is the upper boundary of the curves. In Figure B,2 it is the d
open-loop sensitivity to the right of the crossover point and the d
open=-loop sensitivity to the left of the crossover point. The compensa-
sation is the difference between the closed and open loop sensitivities,
plotted in Figure B.3 for the example. The expected value of clairvoyance
1s found by numerically integrating the product of the compensation plot
and the distribution of the state variable.

The extension of the procedure to many discrete alternatives is
straightforward. There 1is one open-loop sensitivity for each alter- k

native,

open-loop sensitivities. The compensation is the difference between

Accept the problem specification.

Solve for the deterministic optimum decision,

Perform deterministic open loop sensitivities,

Perform deterministic closed loop sensitivities. :
Generate compensation functions., 1

Compute the expected compensation.

G gt

e e it

P

1 1
) .

oy i

The closed loop sensitivity is the concave envelope of the

the closed-loop and open-loop sensitivities as before.

Continuous Decision Variables

For continuous denision variables or for discrete decision vari-

ables with many alternatives, the computer will generate conventional
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sensitivities, Starting with the base case where all state variables

are set to their means and all decision variables are set at the deter-

ministic optimum, the computer successively adds and subtracts an incre=-
ment to the L{°th state variable, As illustrated in Figure B.4a, the i
decision is reoptimized at each point for the closed loop sensitivity E
and held at the deterministic optimum for the open loop sensitivity. §

The compensation plotted in Figure B.4b is the difference between the
To compute the expected compen-

open~loop and closed=loop sensitivities,
sation the computer will approximate the compensation with a quadratic

or other curve forn and perform numerical integration.
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FIGURE B.4 COMPUTATION FOR CONTINUOUS DECISION VARIABLES

F. TIwo Stage Problems

Merkhofer [10] has shown that under certain conditions the two-stage
3 continuous decision problem illustrated in Figure B.5 is solvable by these

methods, As discussed in The Economics of Decision Making [14], the only

; P 's important terms in the value function are the G matrix of second partial

ﬂ i i derivatives of valu: wlth respect to the 1’th state variable and the j"th
‘ decision variable and the H matrix of second partial derivatives of value

with respect to decision variable 1 and decision variable j. These

! matrices may be positionaed as shown in Figure B.5., The value of conpeansa-
1 B tion for this model is defined to be the difference between the open-loop
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FIGURE C.6 THE TWO STAGE QUADRATIC DECISION PROBLEM

sensitivity of the value function to the state variables 5 and the partially

closed loop sensitivity in which the decision variables gl are held at

their deterministic optimums but the decislon variables gQ are continu~

ously optimized as 5 i1s varied. The expected deterministic compensation

is calculated to be:

¢ -1 ’

<vcomp|E> = =(1/2) <51G12H22 1281|E>

The expected value of the optimal decision strategy will equal the ex-
pected deterministic compensation under either of the following condi- |

tions:

1. 8, is probabilistically independent of 8 !

2. G,, 18 a zero matrix and <<szlsl.5?|g? -0 .

(Non=observable state variables are deterministically independent
of the flexible decision variables and the prior expectation is
that the posterior mean of 8, will not be shifted by knowledge

of _B_la)

These conditions are fraquently statisfied in practice.
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Appendix C

THE VALUE OF DECISION~DEPENDENT INFORMATION

The idea of valuing perfect information has appeared in many treat-
ments of decision making under uncertainty, Most often the example being
treated represents a simple hypothetical situation., The informational
structure that is being captured in probability assignments is straight~
forward and the assumptions regarding the probabilistic structure, such
as types of independence among both controlled and uncontrolled variables,
are implicit in the problem statement. However, the correct computation
of the value of information can be elusive on both conceptual and numer-
ical bases. The concept of clairvoyance will lead us to the construction
of detailed information models and to the exploration of their precise

interpretation and use.

l. The Primary Decision

For illustration, let us play the role of analysts for a space mis-
sion designed tn land a remotely controlled experimental apparatus on
the surface of Mars. We have thoroughly analyzed the mission and have
summarized our total state of Information by assigning a 0.6 probability
that the Mars mission will be successful and a corresponding 0.4 prob-
ability that it will be a failure. Also we have analyzed the values to
be derived from the mission and have put them in monetary units--millions-
of-dollars, for example., Let’s assume that the value of a successful Mars
mission 18 50 units and the value of an ursuccessful one is 10 units. A
positive value might be attributed to a failure because attempting the
mission has important social value and even a failure will provide know=
ledge for a better design on the next attempt.

Unexpectedly, several months before launch another nation announces
that it will attempt a similar mission t¢ Venus in about one year., Because
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of the competitive nature of the space race and the {mportant foraign
policy implications of technological leadership, we realize that the value

of changing our destination and successfully landing on Venus would be
quite high. On the other hand, if we attempt to land on Venus and fail 5
we would look foolish for diverting the program, and in any case we would
set back the timetable for our extensive Martian exploration program at

least two years. When all of these factors are evaluated we find that a 3
successful landing on Venus is worth 100 units and a failure costs 10

units. To our surprise, when we check the feasibility of diverting the
mission we find that because of modular design only a few important, but

thoroughly tested, components of the landing system need to be changed,
4 ' and the mission engineers assign a 0.6 probability of success regardless

of destination.

From these assessments, we can lay out the primary decision tree of

: i i Figure C.1. Along each outcome branch emanating from a chance node we
; - : have written the conditional probability of following that path, and near

each node we have written the value, either assigned or derived, of heling

: at the point in the program represented by that node. We see that the
expected value of going to Mars is 34, while the expected value of going
to Venus is 56, Thus, in order to maximize the expected value of the

Ty Y AT e 8 1

mission we decide to go to Venus.

PO A s sy~ o7 e

- Value of Perfect Information

)

T S T e T

= We might wish to use the decislon tree to investigate the possi-
% : bility of gathering new information before we make the final decision.
§ To do thls we can use the value of nerfect Information as an upper bound :

for the value of less complete information gathering programs., Most ana-
lysts, when presented with Figure C.1 and asked to derive the value of ]
perfect information, reverse the order of decision and chance nodes in é
Ly ' Figure C.l to produce the tree shown in Figure C.2. With the latter tree #
we learn first whether the mission will succeed or fail, and then we de=-

cide on the destination. If we know the mission will succeed, we send

it to Venus for 100 units of value, and if it will Zail, we send it to Mars

for 10 units of valua. Using the otiginal probability of success (0.6)
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DESTINATION MISSION

SUCCESS

FAILURE

SUCCESS
100
0.8

VENUS

04
FAILURE
-10

FIGURE C.1 THE PRIMARY DECISION TREE

as the probability that the information will predict a success, we obtain
an expected value of 64 units with perfect information. Subtracting 56

units for the value of the primary decision problem, we obtain 8 units
for the value of perfect information,

What Aight be wrong with this approach? Suppose that perfect infor-
mation revealed that the mission would succeed on Mars but fail on Venus,
or vice~versa. These possibilities do not appear in Figure C.2, To cor=-
rect this omlssion we might draw a new tree for the value with perfect
information as illustrated in Figure C.3. First we learn one of four
possible predictions consisting of the four combinations of success or
failure on Mars and Venus. Then we make the best decisions given this
information, as indicated in the decision tree.

In order to assign probabilites one might reason that, since landings
on Mars or Venus appear in separate portions of the primary tree of
Figure C.1, the events must be independent and the probabilities should
be multiplied as shown in Figure C.3. This will vield a value of 73.6
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DETERMINING THE VALUE OF
PERFECT INFORRATION ‘

with perfect Information, and subtacting the 56 unit value of the primary i

decision it yields a 17.6 value cf perfect information.

However, the independence assumption must be questioned. Since we

can only send the mission to a single destination, might the eveats be

mutually exclusive? If we simply try to assign the probabilitles directly
we are tempted to phrase confusing questions like "What is the proba-
bility we will succeed on both Mars and Venus?" or "If we learned we had
failed on Mars what probability would we assign to success on Venus?"

The trouble stems from the fact that we have only one rocket aud it is
difficult to consider sending it to both destinations simultaneously,

but this consideration seeems to be necessary in order to assign the
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FIGURE C.3 MORE COMPLEX TREE FOR DETERMINING
THE VALUE WITH PERFECT INFORMATION
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required probabilities. Perhaps we could reireai o a "classical" inrer-
pretation in which we construct nany "identical" hypothetical! worldas where
some rockets are sent to Mars and others are sent to Venus, With much
thought and carefu: phrasing we might arrive at clear questions with use-
ful interpretations, but we might still wonder {f we had come up with a

valid assessment.

3. The Concept of Clalrvoyance

These confusing questions of prouvability assessment can be resolved
with the {ntroduction of the clairvoyant, a hypothetical character who
knows all and who can answer any well-specified question about any uncer-
tainty. Of course, we shall never recally be able to obtain answers from
him, but our probability assignments for his possible answers will provide

the key to probabilistic structuring.

In the exam:].. at hand, if we were to ask the clalrvoyant whether
the mission will succeed or fall, he might respond by saying that the re-
sult could depend on where you sent (t., Thus, we snould be led to asking
him two such questions, one for each destination. To make our questions

precise we might draw up the questlonnalre of Figure C.4. Presuming that

DESTINATION MISSION

FAILURE SUCCESS

MARS

VENUS

NOTE: Check one box in each row.

FIGURE C.4 CLAIRVOYANT'S REPORT FORM
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the clairvoyant is satisfied with our definitions of success and failure,
he could answer by checking one box in each row corresponding to the out-

come he foretells for each destination cholice.

Refore we engage the clalrvoyant, we wish to calculate the value
of his sevice In monetary units: the value of clairvoyance. Since the
clairvoyant has two possible answers for each of the two questions, there
are four possible reports for Mars and Venus: failure, failure; failure,
success; success, fallure; success, success. We now must assign prob-
abilities to these reports. A possible probability assignment, compat-
ible with our original assignments of Figure C.l, is Lilustrated In

Figure C.5. This distribution implies dependence between our knowledge

[ VENUS
MARS
FAILURE SUCCESS
FAILURE 0.354 0.048 0.4
SUCCESS 0.048 0.564 038
04 06

FIGURE C.5 JOINT DISTRIBUTION FOR CLAIRVOYANT'S
ANSWERS

of the clairvoyant’s two answers. For example, if he were to answer suc-
cess on Mars, we would then assign a 0.554/0.6 = 0.923 probebility that

he would also answer success on Venus.

Philosophically, the important aspect of this formulation is that we
are assigning probabilites to events that could occur immediately, when
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the clairvoyant reveals his answers. Alsc we have avoided the awkward
conziderations of sending our single spacacraft simultanecusly to both 3

planets or of generating hypothetical uriverses,

We now apply this probability assignment by consiructing the deci-
sion tree of Figure C.6. The initiai chance node represents the clair-
voyant’s revelation of one of the four possible reports, each indicated
by the abbreviated report form on one of the following branches. The
probabilities of Figure C.6 are a~ssigned to these reports. Folliowing
each report we must make the best decision using the values in Figure C.l.

Having made the decisfon Indicated by the arrows, we find that the ex-

pected value with clalrvoyance-«but hefere the clairvoyant reveals his

answer-—{s 65.84. Subtracting the %6 unit value of the primary decision

ad

(without clairvoyance) yvield a value of clairvoyance of 9.84,

Tl _
N

Bt 4 SR80

4. Practical Probabili*y Assignment

It would be rare for experts to think In terms of joint probabjlity
distributions such as those of Figure C.5. Normally, the experts will

have technical {nformation organized in a way that is meaningful to them,

Pmicis et 2ok s,

and It [s desirable to construct the probability model in their terms.

A simple version of such a model is illustrated by the probability assign-
ment model of Figure C.7. Here the first question asked of the clair-
voyant is, "Will the launch system, which {s common to both destinatlions,
work?" The expert has assigned 0.65 to the answer "WORK". The next two
quest ions depend on the destination. The first i{s "If we launch success-
fully and send the spacecraft to Mars, will the landing systems work?"

The expert assigns a probability of 60/65 to a positive answer. For the
corresponding Venus question, the expert also assigns a probability of
60/65. (In general, these assignments need not be equal.} The expert

has also stated that given a successful launch, information about the

clairvoyant®s report for the 'anding system for one destination will not
influence his probability assignment for the other destination: the prob-
ability assignments to these events are conditionally independent. From
this probability assignment model we can calculate the joint probability
distribution for the clairvoyant’s report of success or failure for the
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CLAIRVOYANT'S REPORY DESTINATION
MARS
Fs 8 10
wVI[]
vV
10
VENUS
Y -10
F MARS

Lllde
8

60

VENUS 10

5 MARS _O
10

100

O

VENUS

MARS < >
Bo
100
\ VENUS < >1°°

FIGURE C.6 DECISION TREE FOR DETERMINING THE
VALUE OF COMPLETE CLAIRVOYANCE
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DESTINATION SYSTEMS MISSION

SYSTEMS
WORK
SUCCESS
80
s 3
MARS
5
88 20NT FAILURE
WORK
]
0.65 sUCCESS
FAILURE 1
035

DON'T
—O FAILURE

FIGURE C.7 PROBABILITY ASSIGNMENT MODEL

two possible missions (see¢ Figure C.,5). For erample, the probabllity that

the clairvoyant will report success on both planets is:

o

0.65 89 80 L 4 554

5 65

Figure C.7 I8 similar to what is commonly called the probability assign-
ment tree, except that these trees ususlly do not {nclude possible depen-

|
J

dencies of probability asnignments on decisions.

5. Further Implications of the Probability Assignment Model

The construction of a formal probability assignment model often
While the

raises new, interesting and useful informational questions.
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value of clairvoyance on the uncertainties appearing in the primary deci-
sion tree Is an upper limit for the value of any corresponding informa-
tion gathering program, often the most feasible information gathering
programs are directly releted to the uncertainties appearing in the prob-
ability assignment model. Thus, this model naturally leads to new and

more practical information valuation questions.

For example, in the space mission problem we may be able to conduct
exhaustive experiments on replicas of the launch system and make elabo-
rate tests on the actual launch vehicle, The value of clairvavance on
the launch system alone {8 a stralghtforward calculatien from the (nfor-

mation we have bullt up,

The computation in Figure C.8 shows that the value with clatrvovance
on the launch system is 63 units, Subtracting the 56 nnit value of the
primary declajon, we arrive at a T=unit value of clalrvovance on the
launch svstem onlyv,  Since most of the .84 value of complete clajrvoy-
arce can be derived from the more practical launch system [nformation,
it would bhe best to start a realistic Informatlion-gathering program with

a study of the launch system,

6. Decisi n Dependant Clalrvovance

We may also wish to consider clafrvoyance for only one of the deci-
sfon alternatives. For example, supposce we cenpaged the clalrvovart to
tell us only whether we will succeed or fail {f we send the spacecraft
to Mars. The primary decision tree of Fipure (.1 and the probability
assl{gnment mode! of Figure C.7 pive us all the information we need to
construct the tree for the value with eclalrvoyance about Mars, shown in
Figure .9, Once we pet the clalirvoyunt’s report on the success of the
Mars mission, we must recalculate the probabliity of success on Venus
because of the dependency in our joint probabllity assignment (which
results from the common launch system). A report of a successful Mars
mission results in a revised probability of 0.923 for success on Venus.
A report of falilure {if we go to Mars revises the probablility of failure
on Venus to 0.B885. Using these probabllities, we find the expected
values shown in Figure C.9. Contrary to our intuition, we find that a
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CLAIRVOYANT REPORT
ON LAUNCH SYSTEMS DESTINATION LANDING

&0
es
MARS
5
a8 FAILURE
AlL 10
WORKS
91.54
SUCCESS
100
6y
5
085 VENUS
G164
5

a5 FAILURE
-10

63

SUCCESS

n:l\!s

FAILURE 10

DON'T WOHRK
\ 10

S8UCCESS

100

VENUS 10

1.0
-10

FIGURE C.8 VALUE OF CLAIRVOYAMNCE ON LAUNCH SYSTEMS ONLY
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CLAIFVOYANT'S

REPORT
ON MARS DESTINATION MISSION VALUE
SUCCESS
50
1.0
MARS
50
0 FAILURE
R 10
CESS
Suc 91.57
*SUCCES
__._iO 100
0.6
-10
58,94
SUCCESS
0.4
FAILURE

10

*SUCCESS 100

FAILURE

-10
NOTE: ‘*Success probsbilities on Venus are changsd by Mars report,

FIGURE C.8 VALU: WITH CLAIRVOYANCE ON MARS ONLY

197

T




v

clairvoyant’s report of a successful mars missicn indicates that we
should send the mission to Venus, and that a report tnat we will fail

on Mars indicates that we should send the mission to Mars.

Tuls is the phenomenon of decision-dependent information. Informa-
tion abeni one aspect of a probiem may have surprising implications for
intultively separate aspects of the problem due to dependencies in the
probabilistic informational structure. In complex problems, a formal
evaluation is the only way to determine the correct infarences and thelr

lmplications.

In order to capture these effects, the analysls must not anly repre~
sent the primary problem structure (Figure C.l), but f{t must also capture
the informational structure In a formal model, (Figure C.7). In many prob=-
lems the Informational model may provide the more jatural and more pro-
ductive focus for wunalysis. In the spacecraft cxample, we can derive the
primary decision tree and all the Informational trees from the single prob-
ability assignment model by adding only the decision-event chronologyv to
apply to each case. This approach to analysis might provide a key to morc

effective computer aids to the model building process.

7. Unequal Decision-Dependent Probabilities

The calculatlions demonstrated above work equally well when the prob-
ablities for success on Mars and Venus are not equal, We can demonstrate
this fact by replacing the probabllitles in Figure C.7 with a "launch
system working" probability of 0.75, a "Mars landing system works" prob-
ability of 70/75, and a "Venus landing system works" probability of 50/75.
In the primary decision tree of Figure C.l1 this results in a "Mars suc-
cess" probability of 0.7 and a "Venus success" probebility of 0.5. The
results with these new probability assignments, as well as the original
ones, appear In Table C.l along with additional clairvoyance values for

the Venus mission only and for both landing systems.

8. Conclusion

We have seen that a probability assessment model built on the con-
cept of clairvoyance clarifies the interpretation and specification of
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probability assignments and precisely determines values of clairvoyance.

It also adds precision to the subjectfive Interpretation and assessment

Table C.1

SUMMARY OF SPACE MISSION EXAMPLE NUMERICAL
RESULTS WITH ORIGINAL (EQUAL) PROBABILITIES
AND NEW (INEQUAL) PROBABILITIES

Equal Unequal

Clairvoyance Probabilities Prcbabilities
About Value Value Value Value

with of with of

r..

Nothing 56 0 45 0
Everyvthing 65.84 9.84 64,33 19.33

Launch system 63 7.0 50 5

Landing system 59,48 3.38 61 16
Mars only 54.94 2.94 47.34 2.34
Venus only 65.84 9,84 64.33 19.33

of probability. 1In problems where uncertalinty plays a key role, emphasis

on the construction of a formal fnformatfonal model can clarify communi-

cation and lead to a more rapld and accurate solution.

Further research

is veeded to develop a precise and convenient notatlonal system for deal-

ing with probability assessment models. The existing inferential notational

systems are too cumbersome and the existing graphical representations are

fncomplete.
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Appendix D

THE VALUE OF SEQUENTIAL INFORMATION

|
1
3

Using decision analysis it is possible to calculate the value of one
of more pileces of information~-called '"observables'--when a decision must
be made in the face of uncertainty. This information has value because
it can affect the decision and lead tc a better expected outcome. How-
ever, the possibility of buying information sequentially presents the de-
clsion maker with a set of secondary decisons: which observables should
he buy and in which order should he buy them? It is possible that knowing
one observable affects not only the primary decision, but also the deci~-
sion to buy additional informaticn. 1In that case the value of knowing

the first observable is greater than it would be 1f it affected only the

b i M & il = e 2 0 B e A a3k A A, onds Ao T L2 ok + it M

primary decision, The prices of the observables affect the decision maker’s
willingness to buy aditional informatiown. For this reason the amount that

the value of learning each observable f{s increased by the possibility of

P

buying additional information depends on the prices of all the observablas, ]

When the prices cf all the observables can be added to determine the
price of any combinati_ . of observables and when all the prices are known
with certainty, we canr rformulate the general sequential-information prob-

lem in terms of a set of state variables (xl,...,xm) and a set of observ:

ables (yl,...,yn) with a corresponding set of observable prices

(K ,...,K ). When an obscrvable is equal to one of the state variables
! 1 n
i it represents perfect information. However, by treating cbservables and
]

: state varjables separately, we can also deal with Imperfect Information.

% To solve for the value of information when all of the observables

% can be learned sequentially, we need to solve the deci{sion tree shown in
| Figure D.1. For a large decision problem it would be very difficult and
tedious to generate this decision tree. However, the tree has a very

] : repetitive structure that can be zasily implemented as part of ar auto-

: J mated decision aid for generating decision trees. Instead of the entire
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tree shown in Figure D.!, the user specifies the decision tree that exists

when information cannot be purchased sequentially and then asks the com-

puter program to expand the tree to include sequential informatlon.

P
AN s TSR MR §
3

The computer program starts the expanded decision tree with a deci=-
sion node such as that shown at the left of Figure D.l. The alterna~-
tives at this node are to buy any one of the specified set of observables
or proceed to the basic decision tree without buying information. The
last alternative leads directly to the basic decision tree specified by
the user. The other alternatives lead to chance nodes where the outcome

$ : of the selected observable is revealed,

After a chance node where one of the observables is revealed, the

expanded decision tree contains a decision node where cthe alternatives i

Bcome i

are to learn any of the specificd set of obseirvables that have not been

learned previously or to buy no further information. Again, the last al-

P

i ternative leads directly to the basic declsi.n tree specified by the uscr,

A Bt e e T e Mt s RO

except that this trec 18 now conditioned on the knowledge of one of the
observables. The computer program continues to generate the expanded de-

i ' cision tree in this form until enough decision nudes are added to allow

the decision maker to learn any subset of the specified observables in

DAt i,

any order before proceading to the primary decision problem,

By solving the decision tree in Figure D.l several times using dif-

ferent prices for each of the observables, it s possible for an auto-

mated decision afd to map out decision regions such as those shown in

Figure D,2. Figure D.2 shows decision regions that might occur for two

observables.

We cannot regard the value of learning one obsecvable by itself as
the maximum that we would be willing to pay for that plece on information.

When it is posaible to buy additional information sequentially, the value

of an observable may increase. To determine an upper bound for realistic
efforts deslgned to gather sequential information, we need a decision aid

that can generate and solve a decision tree like the one in Figure D.1.

3 ' Without this sort of ald, the problem structuring and computations are
2 sufficiently difficult to discourage analysts from calculating the value
of sequential information, even when the results might influence information-

purchasing decirions.
205
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THE VALUE OF FLEXIBILITY
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Appendix E

THE VALUE OF FLEXIBILITY

The notion that a good decision strategy is a flexible one haz been
intuitively appreciated by deciaion makers for a long time. Nearly
everyone is familiar with a story of a plan that went wrong because f{t
failed to adjust for some unforeseen circumstance, Decizlon analvsis
has had little to say on the subject of flexibility. However, recent
research on the concept of flexibility shows that this subject should

be i{ncorporatnd in a declsfon morphology.

Roughly speaking, something is flexible if It can be easlly varied,
However, In the context of decision making, ease of varfation may be
described by many different characteristics. Our point of view is that
the flexihility of a glven decision variable Is determined by the nature
of the cholce set associated with that varlable. The larger the choice
set, the preater the decision flexibility. 1f the choice set consists
of a single point element, {n other words If the decision has already

been committed, we say that the decision variable {s inflexible.

A number of the classical micro-economic decision problems for which
flexibility ls a concern may be treated within this framework., Merkhofer
({10] has shown that the problem of sizing a production facility can be
so analyzed.* The decision strategy of committing something less than
one’s total resources 80 as to be prepared to meet unforeseen opportun=

fties may also he expressed as a problem of maintaining flexibility.

The value of flexibllity is strongly dependent upon the information
that raight be received during the decision process., The more a decision

maker expects to learn In the course of a decision, the more it pays to

*For discussion of this problem see Marschak and Nelson (9] and
Baumol {2).
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foilow flexible decision strategies. Similarly, the more flexible one’s

declision strategy, the greater the value of information gathering. Thus,
the concepts of value of information and value of flexibility become
special cases of the more general concept of the value of information

given flexibility,

The value of Iinformation given flexibility measures the value to the
decision maker, in economic units, of obtaining a given amount of infor-
mation together with a given amount of decision flexibility. An upper
limit to this quantity is the expected value of perfect information given
perfect flexibility, EVPIGPF, Figure E.l illustrates the calculation of
the EVPIGPF in a decision tree,

Figure E,l shows a one-stage decision problem. The decision
maker must set a number of decision varlables, denoted dl""’dm'
Subsequently the outcomes of a number of random varlables, sl,..., sn,
become known. Once he has made his decision and the information concern=-
ing the random variable is revealed, the decision maker does not have the
abllity to go back and alter hls decision settings. The structure of the
decision tree in Figure E.la Implies that our decision maker will receive

no Information prior to setting his decision variables.

Figure E.,1b ifllu.*rates tha same components of the decison problem
with perfect Informaticn on state variable Bi given perfect flexibility
on decision varlable dj + In this case the decision maker will learn
the L°th value of the state variable before he must set the j’th decision
variable. By calculating the maximum utility of the decision problems
fllustrated in both parts of Figure E.l, the value of the information
glven flexibility can be obtained., For an expected-value decislon maler,
the EVPIGPF will be the differcnce between the expected values associated

with the two decision problems,

Thus, we see that calculation of the EVPIGPF involves the rearrang-
ing of decision and state variable nodes in the problem’s decision tree.
Therefore, the calculation of the value of flexibility, like the calcula~

tion of the value of information, is a tedious calculation.

2

e . RS o e Pt sl e i B i, B, 2t




g g«

e —

SR Ty, P, Ty

z

|

(b} PERFECT INFORMATION ON 3, GIVEN PERFECT FLEXIBILITY ON t!j

FIGURE E1 A PORTION OF A DECISION STRUCTURE

Assistance In the form of a computerized system for restructuring
decision trees would be useful for information and flexibilfty computa=-
tions, With such an ald, the nnalyst would spectfy the potentlial Infor=
nation variables and those declision variables chat could be set In respouse
to that i{nformation. Tree restructuring would then be performed automa=-
tically and the new decislon structure evaluat:d., The computed output
would be the expected value to the decislon maker of obtaining that com-
binatlon of information and decision flexibility. This value would be

extremely useful to the decislon maker for evaluating various proposed

information gathering and distribution systems.
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